/* ns820-diag.c: National Semiconductor DP83820 series diagnostic and setup. This is a diagnostic and EEPROM setup program for PCI adapters based on the National Semiconductor DP83820 series. Written 1998-2002 by Donald Becker. Copyright Donald Becker and Scyld Computing Corporation This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Contact the author for use under other terms. This program must be compiled with "-O"! See the bottom of this file for the suggested compile-command. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 914 Bay Ridge Road, Suite 220 Annapolis MD 21403 Updates and additional information are available at http://www.scyld.com/diag/index.html http://scyld.com/expert/mii-status.html http://scyld.com/expert/NWay.html Common-sense licensing statement: Using any portion of this program in your own program means that you must give credit to the original author and release the resulting code under the GPL. To use this code under other terms requires an explicit license from the copyright holder. */ static char *version_msg = "ns820-diag.c:v2.05 2/28/2005 Donald Becker (becker@scyld.com)\n" " http://www.scyld.com/diag/index.html\n"; static char *usage_msg = "Usage: ns820-diag [-aEefFGhmqrRtTvVwW] [-p ] [-[AF] ]\n" " For details and other options see http://www.scyld.com/diag/index.html\n"; static const char long_usage_msg[] = "Usage: %s [-aDfrRvVw] [-AF ] [-#]\n\ \n\ Show the internal state of a network adapter.\n\ \n\ The common usage is\n\ ns820-diag -aem\n\ \n\ Frequently used options are\n\ -a --show_all_registers Print all registers.\n\ -e --show-eeprom Dump EEPROM contents, \"-ee\" shows the details.\n\ -m --show_mii Print the MII transceiver state\n\ Using -mm monitors the link.\n\ -f --force Perform operation, even on a running NIC.\n\ \n\ To operate on a single NIC, or one that hasn't been automatically found:\n\ -# --card_num INDEX Operate on the specified card index.\n\ -p --port-base IOADDR Assume an adapter at the specified I/O address.\n\ -t --chip-type TYPE Specify adapter type with '-p', use '-1' to list.\n\ \n\ To change the persistent EEPROM settings\n\ -G --parameters PARMS Set adapter-specific parameters.\n\ -H --new-hwaddr 01:23:45:67:ab:cd\n\ Set a new hardware station address. Typically diabled, \n\ -w --write-EEPROM Actually write the new settings into the EEPROM.\n\ \n\ -D --debug\n\ -v --verbose Report each action taken.\n\ -V --version Emit version information.\n\ \n\ -A --advertise (See the mii-diag manual page.)\n\ "; #if ! defined(__OPTIMIZE__) #warning You must compile this program with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include #include #include #include #include #include #include #include /* The following are required only with unaligned field accesses. */ #include #include "unaligned.h" #if defined(__linux__) && __GNU_LIBRARY__ == 1 #include /* Newer libraries use instead. */ #else #include #endif /* No libmii.h or libflash.h yet, thus the declarations here. */ extern int show_mii_details(long ioaddr, int phy_id); extern int monitor_mii(long ioaddr, int phy_id); extern int flash_show(long addr_ioaddr, long data_ioaddr); extern int flash_dump(long addr_ioaddr, long data_ioaddr, char *filename); extern int flash_program(long addr_ioaddr, long data_ioaddr, char *filename); extern int (*flash_in_hook)(long addr, int offset); extern void (*flash_out_hook)(long addr, int offset, int val); /* We should use __u8 .. __u32, but they are not always defined. */ typedef u_int32_t u32; typedef u_int16_t u16; typedef u_int8_t u8; struct option longopts[] = { /* { name has_arg *flag val } */ {"card-num", 1, 0, '#'}, /* Operate on the specified card index. */ {"Advertise", 1, 0, 'A'}, {"base-address", 1, 0, 'p'}, {"show_all_registers", 0, 0, 'a'}, /* Print all registers. */ {"help", 0, 0, 'h'}, /* Print a long usage message. */ {"show-eeprom", 0, 0, 'e'}, /* Dump EEPROM contents (-ee valid). */ {"emergency-rewrite", 0, 0, 'E'}, /* Re-write a corrupted EEPROM. */ {"force-detection", 0, 0, 'f'}, {"new-interface", 1, 0, 'F'}, /* New interface (built-in, AUI, etc.) */ {"new-hwaddr", 1, 0, 'H'}, /* Set a new hardware address. */ {"show-mii", 0, 0, 'm'}, /* Dump MII management registers. */ {"port-base", 1, 0, 'p'}, /* Use the specified I/O address. */ {"quiet", 0, 0, 'q'}, /* Decrease verbosity */ {"reset", 0, 0, 'R'}, /* Reset the transceiver. */ {"chip-type", 1, 0, 't'}, /* Assume the specified chip type index. */ {"test", 0, 0, 'T'}, /* Do register and SRAM test. */ {"verbose", 0, 0, 'v'}, /* Verbose mode */ {"version", 0, 0, 'V'}, /* Display version number */ {"write-EEPROM", 1, 0, 'w'},/* Actually write the EEPROM with new vals */ { 0, 0, 0, 0 } }; extern int ns820_diag(int vend_id, int dev_id, long ioaddr, int part_idx); /* Chip-specific flags. Yes, it's grungy to have the enum here. */ /* The table of known chips. Because of the bogus /proc/pci interface we must have both the exact name from the kernel, a common name and the PCI vendor/device IDs. This table is searched in order: place specific entries followed by 'catch-all' general entries. */ struct pcidev_entry { const char *part_name; const char *proc_pci_name; int vendor, device, device_mask; int flags; int io_size; int (*diag_func)(int vendor_id, int device_id, long ioaddr, int part_idx); } pcidev_tbl[] = { {"National Semiconductor DP83820 series", 0, 0x100B, 0x0022, 0xffff, 0, 256, ns820_diag}, { 0, 0, 0, 0}, }; int verbose = 1, opt_f = 0, debug = 0; int show_regs = 0, show_eeprom = 0, show_mii = 0; unsigned int opt_a = 0, /* Show-all-interfaces flag. */ opt_restart = 0, opt_reset = 0, opt_watch = 0, opt_G = 0; unsigned int opt_GPIO = 0; /* General purpose I/O setting. */ int do_write_eeprom = 0, do_test = 0; int nway_advertise = 0, fixed_speed = -1; int new_default_media = -1; /* Valid with libflash only. */ static unsigned int opt_flash_show = 0; static char *opt_flash_dumpfile = NULL, *opt_flash_loadfile = NULL; static unsigned char new_hwaddr[6], set_hwaddr = 0; static int emergency_rewrite = 0; static int scan_proc_pci(int card_num); static int parse_media_type(const char *capabilities); static int get_media_index(const char *name); /* Chip-specific options, if any, go here. */ int main(int argc, char **argv) { int port_base = 0, chip_type = 0; int errflag = 0, show_version = 0; int c, longind; int card_num = 0; extern char *optarg; while ((c = getopt_long(argc, argv, "#:aA:DeEfF:G:hH:mp:qrRt:TvVwWBL:S:", longopts, &longind)) != -1) switch (c) { case '#': card_num = atoi(optarg); break; case 'a': show_regs++; opt_a++; break; case 'A': nway_advertise = parse_media_type(optarg); break; case 'D': debug++; break; case 'e': show_eeprom++; break; case 'E': emergency_rewrite++; break; case 'f': opt_f++; break; case 'F': new_default_media = get_media_index(optarg); if (new_default_media < 0) errflag++; break; case 'G': opt_G++; opt_GPIO = strtoul(optarg, NULL, 16); break; case 'h': fprintf(stderr, long_usage_msg, argv[0]); return 0; case 'H': { int hwaddr[6], i; if (sscanf(optarg, "%2x:%2x:%2x:%2x:%2x:%2x", hwaddr, hwaddr + 1, hwaddr + 2, hwaddr + 3, hwaddr + 4, hwaddr + 5) == 6) { for (i = 0; i < 6; i++) new_hwaddr[i] = hwaddr[i]; set_hwaddr++; } else errflag++; break; } case 'm': show_mii++; break; case 'p': port_base = strtoul(optarg, NULL, 16); break; case 'q': if (verbose) verbose--; break; case 'r': opt_restart++; break; case 'R': opt_reset++; break; case 't': chip_type = atoi(optarg); break; case 'T': do_test++; break; case 'v': verbose++; break; case 'V': show_version++; break; case 'w': do_write_eeprom++; break; case 'W': opt_watch++; break; case 'B': opt_flash_show++; break; case 'L': opt_flash_loadfile = optarg; break; case 'S': opt_flash_dumpfile = optarg; break; case '?': errflag++; } if (errflag) { fprintf(stderr, usage_msg); return 3; } if (verbose || show_version) printf(version_msg); if (chip_type < 0 || chip_type >= sizeof(pcidev_tbl)/sizeof(pcidev_tbl[0]) - 1) { int i; fprintf(stderr, "Valid numeric chip types are:\n"); for (i = 0; pcidev_tbl[i].part_name; i++) { fprintf(stderr, " %d\t%s\n", i, pcidev_tbl[i].part_name); } return 3; } /* Get access to all of I/O space. */ if (iopl(3) < 0) { perror("Network adapter diagnostic: iopl()"); fprintf(stderr, "This program must be run as root.\n"); return 2; } /* Try to read a likely port_base value from /proc/pci. */ if (port_base) { printf("Assuming a %s adapter at %#x.\n", pcidev_tbl[chip_type].part_name, port_base); pcidev_tbl[chip_type].diag_func(0, 0, port_base, chip_type); } else if ( scan_proc_pci(card_num) == 0) { fprintf(stderr, "Unable to find a recognized card in /proc/pci.\nIf there is" " a card in the machine, explicitly set the I/O port" " address\n using '-p -t '\n" " Use '-t -1' to see the valid chip types.\n"); return ENODEV; } if (show_regs == 0 && show_eeprom == 0 && show_mii == 0) printf(" Use '-a' or '-aa' to show device registers,\n" " '-e' to show EEPROM contents, -ee for parsed contents,\n" " or '-m' or '-mm' to show MII management registers.\n"); return 0; } /* Generic (all PCI diags) code to find cards. */ static char bogus_iobase[] = "This chip has not been assigned a valid I/O address, and will not function.\n" " If you have warm-booted from another operating system, a complete \n" " shut-down and power cycle may restore the card to normal operation.\n"; static char bogus_irq[] = "This chip has not been assigned a valid IRQ, and will not function.\n" " This must be fixed in the PCI BIOS setup. The device driver has no way\n" " of changing the PCI IRQ settings.\n" " See http://www.scyld.com/expert/irq-conflict.html for more information.\n"; static int scan_proc_bus_pci(int card_num) { int card_cnt = 0, chip_idx = 0; int port_base; char buffer[514]; unsigned int pci_bus, pci_devid, irq, pciaddr0, pciaddr1; int i; FILE *fp = fopen("/proc/bus/pci/devices", "r"); if (fp == NULL) { if (debug) fprintf(stderr, "Failed to open /proc/bus/pci/devices.\n"); return -1; } while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parsing line -- %s", buffer); if (sscanf(buffer, "%x %x %x %x %x", &pci_bus, &pci_devid, &irq, &pciaddr0, &pciaddr1) <= 0) break; for (i = 0; pcidev_tbl[i].vendor; i++) { if ((pci_devid >> 16) != pcidev_tbl[i].vendor || (pci_devid & pcidev_tbl[i].device_mask) != pcidev_tbl[i].device) continue; chip_idx = i; card_cnt++; /* Select the I/O address. */ port_base = pciaddr0 & 1 ? pciaddr0 & ~1 : pciaddr1 & ~1; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (irq == 0 || irq == 255) printf(bogus_irq); if (port_base) pcidev_tbl[chip_idx].diag_func(0,0,port_base, i); else printf(bogus_iobase); break; } } } fclose(fp); return card_cnt; } static int scan_proc_pci(int card_num) { int card_cnt = 0, chip_idx = 0; char chip_name[40]; FILE *fp; int port_base; if ((card_cnt = scan_proc_bus_pci(card_num)) >= 0) return card_cnt; card_cnt = 0; fp = fopen("/proc/pci", "r"); if (fp == NULL) return 0; { char buffer[514]; int pci_bus, pci_device, pci_function, vendor_id, device_id; int state = 0; if (debug) printf("Done open of /proc/pci.\n"); while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parse state %d line -- %s", state, buffer); if (sscanf(buffer, " Bus %d, device %d, function %d", &pci_bus, &pci_device, &pci_function) > 0) { chip_idx = 0; state = 1; continue; } if (state == 1) { if (sscanf(buffer, " Ethernet controller: %39[^\n]", chip_name) > 0) { int i; if (debug) printf("Named ethernet controller %s.\n", chip_name); for (i = 0; pcidev_tbl[i].part_name; i++) if (pcidev_tbl[i].proc_pci_name && strncmp(pcidev_tbl[i].proc_pci_name, chip_name, strlen(pcidev_tbl[i].proc_pci_name)) == 0) { state = 2; chip_idx = i; continue; } continue; } /* Handle a /proc/pci that does not recognize the card. */ if (sscanf(buffer, " Vendor id=%x. Device id=%x", &vendor_id, &device_id) > 0) { int i; if (debug) printf("Found vendor 0x%4.4x device ID 0x%4.4x.\n", vendor_id, device_id); for (i = 0; pcidev_tbl[i].vendor; i++) if (vendor_id == pcidev_tbl[i].vendor && (device_id & pcidev_tbl[i].device_mask) == pcidev_tbl[i].device) break; if (pcidev_tbl[i].vendor == 0) continue; chip_idx = i; state = 2; } } if (state == 2) { if (sscanf(buffer, " I/O at %x", &port_base) > 0) { card_cnt++; state = 3; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (port_base) pcidev_tbl[chip_idx].diag_func (vendor_id, device_id, port_base, chip_idx); else printf(bogus_iobase); } } } } } fclose(fp); return card_cnt; } /* Convert a text media name to a NWay capability word. */ static int parse_media_type(const char *capabilities) { const char *mtypes[] = { "100baseT4", "100baseTx", "100baseTx-FD", "100baseTx-HD", "10baseT", "10baseT-FD", "10baseT-HD", 0, }; char *endptr; int cap_map[] = { 0x0200, 0x0180, 0x0100, 0x0080, 0x0060, 0x0040, 0x0020,}; int i; if (debug) fprintf(stderr, "Advertise string is '%s'.\n", capabilities); for (i = 0; mtypes[i]; i++) if (strcasecmp(mtypes[i], capabilities) == 0) return cap_map[i]; i = strtoul(capabilities, &endptr, 16); if (*endptr == 0 && 0 < i && i <= 0xffff) return i; fprintf(stderr, "Invalid media advertisement '%s'.\n", capabilities); return 0; } /* Return the index of a valid media name. 0x0800 Power up autosense (check speed only once) 0x8000 Dynamic Autosense */ /* A table of media names to indices. This matches the Digital Tulip SROM numbering, primarily because that is the most complete list. Other chips will have to map these number to their internal values. */ struct { char *name; int value; } mediamap[] = { { "10baseT", 0 }, { "10base2", 1 }, { "AUI", 2 }, { "100baseTx", 3 }, { "10baseT-FDX", 0x204 }, { "100baseTx-FDX", 0x205 }, { "100baseT4", 6 }, { "100baseFx", 7 }, { "100baseFx-FDX", 8 }, { "MII", 11 }, { "Autosense", 0x0800 }, { 0, 0 }, }; static int get_media_index(const char *name) { char *endptr; int i; if (! name) return -1; for (i = 0; mediamap[i].name; i++) if (strcasecmp(name, mediamap[i].name) == 0) return i; i = strtol(name, &endptr, 0); if (*endptr == 0) return i; fprintf(stderr, "Invalid interface specified. It must be one of\n"); for (i = 0; mediamap[i].name; i++) fprintf(stderr, " %d %s\n", mediamap[i].value, mediamap[i].name); return -1; } /* Chip-specific section. */ /* The chip-specific section for the dp83820 series. */ static int read_eeprom(long ioaddr, int location, int addr_len); static void write_eeprom(long ioaddr, int index, int value, int addr_len); int mdio_read(long ioaddr, int phy_id, int location); void mdio_write(long ioaddr, int phy_id, int location, int value); /* Offsets to the various registers. */ enum register_offsets { ChipCmd=0x00, ChipConfig=0x04, EECtrl=0x08, TestControl=0x0C, IntrStatus=0x10, IntrMask=0x14, IntrEnable=0x18, TxRingPtr=0x20, TxRingPtrHi=0x24, TxConfig=0x28, GeneralIO=0x2C, RxRingPtr=0x30, RxRingPtrHi=0x34, RxConfig=0x38, WOLCmd=0x40, PauseCmd=0x44, RxFilterAddr=0x48, RxFilterData=0x4C, BootRomAddr=0x50, BootRomData=0x54, ChipRevReg=0x58, StatsCtrl=0x5C, RxPktErrs=0x60, RxMissed=0x68, RxCRCErrs=0x64, }; /* Bits in the interrupt status/mask registers. */ enum intr_status_bits { IntrRxDone=0x0001, IntrRxIntr=0x0002, IntrRxErr=0x0004, IntrRxEarly=0x0008, IntrRxIdle=0x0010, IntrRxOverrun=0x0020, IntrTxDone=0x0040, IntrTxIntr=0x0080, IntrTxErr=0x0100, IntrTxIdle=0x0200, IntrTxUnderrun=0x0400, StatsMax=0x0800, LinkChange=0x4000, WOLPkt=0x2000, RxResetDone=0x1000000, TxResetDone=0x2000000, IntrPCIErr=0x00f00000, IntrNormalSummary=0x0251, IntrAbnormalSummary=0xED20, }; /* The textual names of the interrupt indications. */ static const char *intr_names[] ={ "Rx Done event", "Rx event", "Receive error", "Rx started", "Receiver idle", "Rx overrun", "Tx complete", "Tx packet in FIFO", "Transmit error", "Tx queue emptied", "Tx underrun", "Statistics counters full", "Driver software intr", "Wake-up packet", "Link change wakeup", "Error summary", "Rx status overrun", "PCI target abort", "PCI master abort", "PCI system error", "PCI parity error", "Receiver reset done", "Transmitter reset done", }; /* Values read from the EEPROM, and a new image to write. */ #define EEPROM_SIZE 256 unsigned short eeprom_contents[EEPROM_SIZE]; unsigned short new_ee_contents[EEPROM_SIZE]; #define EE_OFFSET EECtrl /* Register offset in I/O space. */ /* The EEPROM commands include the alway-set leading bit. */ enum EEPROM_Cmds { EE_WriteCmd=5, EE_ReadCmd=6, EE_EraseCmd=7, }; static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len); static void natsemi820_eeprom(unsigned short *ee_data); /* Support for Flash operations. */ static int natsemi_flash_in(long ioaddr, int offset) { outl(offset, ioaddr + BootRomAddr); return inl(ioaddr + BootRomData) & 0xff; } #ifdef LIBFLASH static void natsemi_flash_out(long ioaddr, int offset, int val) { outl(offset, ioaddr + BootRomAddr); outl(val, ioaddr + BootRomData); } #endif /* A table for emitting the configuration of a register. */ struct config_name { int val, mask; const char*name;}; static struct config_name rcvr_mode[] = { {0x00000000, 0x80000000, "Receive disabled"}, {0xf0000000, 0xf0000000, "Promiscuous"}, {0xe0000000, 0xf0100000, "Normal unicast and all multicast"}, {0xc0200000, 0xf0300000, "Normal unicast and hashed multicast"}, {0xc0000000, 0xf0300000, "Normal unicast and match filter"}, {0x00, 0x00, "Unknown/invalid"}, }; int ns820_diag(int vendor_id, int device_id, long ioaddr, int part_idx) { unsigned int chip_active = inl(ioaddr + IntrEnable); unsigned int rx_mode = inl(ioaddr + RxFilterAddr); int ee_addr_len = 6, eeprom_size = 64, eeprom_change = 0; int i; if (chip_active == 0xffffffff && !opt_f) { printf(" * A recognized chip has been found, but it does not " "appear to exist in\n * I/O space. Use the" " '-f' flag to see the register values anyway.\n"); return 1; } /* Always show the basic status. */ printf(" Natsemi 83820 series with station address "); for (i = 0; i < 6; i+=2) { unsigned short rf_data; outw(i, ioaddr + RxFilterAddr); rf_data = inl(ioaddr + RxFilterData); printf("%2.2x:%2.2x%c", rf_data & 0xff, (rf_data >> 8) & 0xff, i < 4 ? ':' : '\n'); } if (opt_G) { printf("Setting the configuration register to %8.8x.\n", opt_GPIO); outl(opt_GPIO, ioaddr + ChipConfig); } if (verbose > 1 || show_regs) { unsigned int intr_status = inl(ioaddr + IntrStatus); unsigned int tx_config = inl(ioaddr + TxConfig); char dont_read[8] = {0x10,0x00,0x01,0x00,0x00,0x00,0x00,0x00}; if (chip_active && !opt_f) { printf(" This device appears to be active, so some registers" " will not be read.\n" " To see all register values use the '-f' flag.\n"); } else chip_active = 0; /* Ignore the chip status with -f */ printf("%s chip registers at %#lx", pcidev_tbl[part_idx].part_name, ioaddr); for (i = 0; i < pcidev_tbl[part_idx].io_size; i += 4) { if ((i & 0x1f) == 0) printf("\n 0x%3.3X:", i); if (chip_active && (dont_read[i>>5]) & (1<<((i>>2) & 7))) printf(" ********"); else printf(" %8.8x", (int)inl(ioaddr + i)); } printf("\n"); if (intr_status == 0xffffffff && !opt_f) { printf(" * A recognized chip has been found, but it does not " "appear to exist in\n * I/O space. Use the" " '-f' flag to see the register values anyway.\n"); return 1; } printf(" %snterrupt sources are pending (%8.8x).\n", (intr_status & 0x03ff) ? "I": "No i", intr_status); if (intr_status) { for (i = 0; i < sizeof(intr_names)/sizeof(intr_names[0]); i++) if (intr_status & (1< 1) { printf(" Rx filter contents: "); for (i = 0; i < 16; i+=2) { outw(i, ioaddr + RxFilterAddr); printf(" %4.4x", (int)inl(ioaddr + RxFilterData)); } printf("\n"); } printf(" Tx threshold %d bytes, FIFO fill %d bytes.\n", (tx_config & 0xff) << 5, (tx_config & 0xff00) >> 3); } outl(rx_mode, ioaddr + RxFilterAddr); if (do_test && chip_active && !opt_f) printf(" Running these diagnostic test is not recommended while the " "device is active.\n" " To run them anyway, use the '-f' flag.\n"); else if (do_test) { int result; outl(0x0400, ioaddr + TestControl); for (i = 0; i < 10000; i++) { /* Typical 1050 iterations. */ if (inl(ioaddr + TestControl) & 0x0200) break; } result = inl(ioaddr + TestControl); if (debug) printf(" Internal SRAM test took %d ticks.\n", i); printf(" Internal SRAM test result is %4.4x: %s.\n", result, result & 0x01B8 ? "failed" : "passed"); if (result & 0x01B8) { if (result & 0x0100) fprintf(stderr, " *** Rx status FIFO test failed!\n"); if (result & 0x0080) fprintf(stderr, " *** Rx data FIFO test failed!\n"); if (result & 0x20) fprintf(stderr, " *** Tx data FIFO test failed!\n"); if (result & 0x0010) fprintf(stderr, " *** Rx multicast filter test failed!\n"); if (result & 0x0008) fprintf(stderr, " *** Rx match filter test failed!\n"); if ( ! opt_f) return 2; } outl(0x02, ioaddr + TestControl); for (i = 0; i < 10000; i++) { /* Typical 3350 iterations. */ if ( ! (inl(ioaddr + TestControl) & 0x02)) break; } result = inl(ioaddr + TestControl); if (debug) printf(" EEPROM internal test took %d ticks.\n", i); printf(" Configuration EEPROM checksum test result is %4.4x: %s.\n", result, result & 1 ? "failed" : "passed"); } if (set_hwaddr || show_eeprom || new_default_media >= 0) { ee_addr_len = do_eeprom_cmd(ioaddr, EE_ReadCmd << (6+16), 3 + 6 + 16) & 0x10000 ? 8 : 6; eeprom_size = 1 << ee_addr_len; printf(" EEPROM address length %d, %d words.\n", ee_addr_len, eeprom_size); for (i = 0; i < eeprom_size; i++) eeprom_contents[i] = read_eeprom(ioaddr, i, ee_addr_len); memcpy(new_ee_contents, eeprom_contents, sizeof eeprom_contents); } if (emergency_rewrite && ! set_hwaddr) printf("*** Emergency EEPROM rewrite is only valid when you also " "specify a new\n*** station address with -H \n"); if (set_hwaddr) { u16 backup_ee_contents[] = { 0x4900, 0x1186, 0x340b, 0x0200, 0x0000, 0x00b4, 0x0000, 0x0000, 0x0000, 0x24a7, 0x37ba, 0x5000, }; if (emergency_rewrite) memcpy(new_ee_contents, backup_ee_contents, sizeof backup_ee_contents); /* NatSemi corrected the endian mix-up and dropped bits of the earlier series. */ new_ee_contents[12] = new_hwaddr[0] + (new_hwaddr[1]<<8); new_ee_contents[11] = new_hwaddr[2] + (new_hwaddr[3]<<8); new_ee_contents[10] = new_hwaddr[4] + (new_hwaddr[5]<<8); eeprom_change++; } if (eeprom_change) { int sum = 0x55; /* Calculate the new checksum. */ for (i = 0; i < 13; i++) sum += new_ee_contents[i] + (new_ee_contents[i]>>8); new_ee_contents[13] = ((-sum & 0xff) << 8) | 0x0055; for (i = 0; i < 16; i++) if (new_ee_contents[i] != eeprom_contents[i]) { if (do_write_eeprom) write_eeprom(ioaddr, i, new_ee_contents[i], ee_addr_len); else printf("Would write %4.4x to replace %4.4x at %d.\n", new_ee_contents[i], eeprom_contents[i], i); } } if (show_eeprom > 1) { printf("EEPROM contents (%d words):", eeprom_size); for (i = 0; i < eeprom_size; i += 8) { int j; printf("\n0x%2.2x: ", i); for (j = 0; j < 8; j++) printf(" %4.4x", eeprom_contents[i + j]); if (show_eeprom > 2) { printf(" "); for (j = 0; j < 8; j++) { int ew = eeprom_contents[i + j]; printf("%c%c", isprint(ew & 0xff) ? ew & 0xff : '_', isprint(ew >> 8) ? ew >> 8 : '_' ); } } } printf("\n"); } if (show_eeprom) natsemi820_eeprom(eeprom_contents); if (show_mii > 1) { int phys[4], phy, phy_idx = 0; for (phy = 0; phy < 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(ioaddr, phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { phys[phy_idx++] = phy; printf(" MII PHY found at address %d, status 0x%4.4x.\n", phy, mii_status); } } if (phy_idx == 0) printf(" ***WARNING***: No MII transceivers found!\n"); for (phy = 0; phy < phy_idx; phy++) { int mii_reg; printf(" MII PHY #%d transceiver registers:", phys[phy]); for (mii_reg = 0; mii_reg < 32; mii_reg++) printf("%s %4.4x", (mii_reg % 8) == 0 ? "\n " : "", mdio_read(ioaddr, phys[phy], mii_reg)); printf(".\n"); } #ifdef LIBMII show_mii_details(ioaddr, phys[0]); if (show_mii > 1) monitor_mii(ioaddr, phys[0]); #endif } else if (show_mii) { int mii_reg; for (mii_reg = 0; mii_reg < 32; mii_reg++) printf("%s %4.4x", (mii_reg % 8) == 0 ? "\n " : "", mdio_read(ioaddr, 1, mii_reg)); printf(".\n"); #ifdef LIBMII show_mii_details(ioaddr, 1); #endif } printf(" General purpose I/O register is %8.8x.\n", inl(ioaddr + GeneralIO)); #ifdef LIBFLASH { flash_in_hook = natsemi_flash_in; flash_out_hook = natsemi_flash_out; if (opt_flash_show) flash_show(ioaddr, 0); if (opt_flash_dumpfile) if (flash_dump(ioaddr, 0, opt_flash_dumpfile) < 0) { fprintf(stderr, "Failed to save the old Flash BootROM image " "into file '%s'.\n", opt_flash_dumpfile); return 3; } if (opt_flash_loadfile) if (flash_program(ioaddr, 0, opt_flash_loadfile) < 0) { fprintf(stderr, "Failed to load the new Flash BootROM image " "from file '%s'.\n", opt_flash_loadfile); return 4; } } #else if (opt_flash_loadfile || opt_flash_dumpfile || opt_flash_show) printf("Flash operations not configured into this program.\n"); if (opt_flash_show) { printf("The first few boot ROM bytes are:"); for (i = 0; i < 8; i++) printf(" %2.2x", natsemi_flash_in(ioaddr, i)); printf(".\n"); } #endif return 0; } static void natsemi820_eeprom(unsigned short *ee_data) { int i, sum = 0x55; printf("Decoded EEPROM contents:\n" " PCI Subsystem IDs -- Vendor %#4.4x, Device %#4.4x.\n" " PCI timer settings -- minimum grant %d, maximum latency %d.\n", ee_data[1], ee_data[0], ee_data[2] & 0xff, ee_data[2] >> 8); printf(" Wake-On-LAN password " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x.\n", ee_data[9] & 0xff, ee_data[9]>>8, ee_data[8] & 0xff, ee_data[8]>>8, ee_data[7] & 0xff, ee_data[7]>>8); printf(" Ethernet MAC Station Address " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x.\n", ee_data[12] & 0xff, ee_data[12]>>8, ee_data[11] & 0xff, ee_data[11]>>8, ee_data[10] & 0xff, ee_data[10]>>8); printf(" General Purpose I/O register %4.4x.\n", ee_data[4]); for (i = 0; i < 13; i++) sum += ee_data[i] + (ee_data[i]>>8); sum = -sum & 0xff; printf(" EEPROM active region checksum read as %4.4x, vs %2.2x55 " "calculated value.\n", ee_data[13], sum); return; } /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */ /* Delay between EEPROM clock transitions. This flushes the write buffer to prevent quick double-writes. */ #define eeprom_delay(ee_addr) inl(ee_addr); inl(ee_addr) enum EEPROM_Ctrl_Bits { EE_ShiftClk=0x04, EE_DataIn=0x01, EE_ChipSelect=0x08, EE_DataOut=0x02, }; #define EE_Write0 (EE_ChipSelect) #define EE_Write1 (EE_ChipSelect | EE_DataIn) /* Execute a generic EEPROM command. Return all data output from the EEPROM, and thus may be used for EEPROM sizing, read, erase or write. */ static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len) { unsigned retval = 0; long ee_addr = ioaddr + EE_OFFSET; if (debug > 1) printf(" EEPROM op 0x%x: ", cmd); outl(EE_ChipSelect | EE_ShiftClk, ee_addr); /* Shift the command bits out. */ do { short dataval = (cmd & (1 << cmd_len)) ? EE_Write1 : EE_Write0; outl(dataval, ee_addr); eeprom_delay(ee_addr); if (debug > 2) printf("%X", inl(ee_addr) & 15); outl(dataval | EE_ShiftClk, ee_addr); eeprom_delay(ee_addr); retval = (retval << 1) | ((inl(ee_addr) & EE_DataOut) ? 1 : 0); } while (--cmd_len >= 0); outl(EE_ChipSelect, ee_addr); /* Terminate the EEPROM access. */ outl(0, ee_addr); if (debug > 1) printf(" EEPROM result is 0x%5.5x.\n", retval); return retval; } /* Wait for the EEPROM to finish what it is doing. */ static int eeprom_busy_poll(long ee_ioaddr) { int i; outl(EE_ChipSelect, ee_ioaddr); for (i = 0; i < 10000; i++) /* Typical 2000 ticks */ if (inl(ee_ioaddr) & EE_DataOut) break; return i; } /* The abstracted functions for EEPROM access. */ static int read_eeprom(long ioaddr, int location, int addr_len) { return do_eeprom_cmd(ioaddr, ((EE_ReadCmd << addr_len) | location) << 16, 3 + addr_len + 16) & 0xffff; } static void write_eeprom(long ioaddr, int index, int value, int addr_len) { long ee_ioaddr = ioaddr + EE_OFFSET; int i; /* Poll for previous op finished. */ eeprom_busy_poll(ee_ioaddr); /* Enable programming modes. */ do_eeprom_cmd(ioaddr, (0x4f << (addr_len-4)), 3 + addr_len); /* Do the actual write. */ do_eeprom_cmd(ioaddr, (((EE_WriteCmd<= 0; i--) { mdio_out(MDIO_ENB | MDIO_WRITE1, mdio_addr); mdio_delay(mdio_addr); mdio_out(MDIO_ENB | MDIO_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(mdio_addr); } return; } int mdio_read(long ioaddr, int phy_id, int location) { long mdio_addr = ioaddr + MDIO_IO_OFFSET; int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; int i, retval = 0; if (verbose > 2) /* Debug: 5 */ printf(" mdio_read(%#lx, %d, %d)..", ioaddr, phy_id, location); /* Establish sync by sending at least 32 logic ones. */ mdio_sync(ioaddr); /* Shift the read command bits out. */ for (i = 17; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; if (verbose > 3) /* Debug: 5 */ printf("%d", (mii_cmd & (1 << i)) ? 1 : 0); mdio_out(MDIO_ENB | dataval, mdio_addr); mdio_delay(mdio_addr); mdio_out(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr); if (verbose > 3) printf(" %x", (mdio_in(mdio_addr) >> 16) & 0x0f); mdio_delay(mdio_addr); } if (verbose > 3) printf("-> %x", (mdio_in(mdio_addr) >> 16) & 0x0f); /* Read the two transition, 16 data, and wire-idle bits. */ for (i = 19; i > 0; i--) { mdio_out(MDIO_ENB_IN, mdio_addr); mdio_delay(mdio_addr); retval = (retval << 1) | ((mdio_in(mdio_addr) & MDIO_DATA_READ) ? 1 : 0); if (verbose > 3) printf(" %x", (mdio_in(mdio_addr) >> 16) & 0x0f); mdio_out(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(mdio_addr); } if (verbose > 3) printf(" == %4.4x.\n", retval); return (retval>>1) & 0xffff; } void mdio_write(long ioaddr, int phy_id, int location, int value) { long mdio_addr = ioaddr + MDIO_IO_OFFSET; int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value; int i; /* Establish sync by sending 32 logic ones. */ mdio_sync(ioaddr); /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; mdio_out(MDIO_ENB | dataval, mdio_addr); mdio_delay(mdio_addr); mdio_out(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(mdio_addr); } /* Clear out extra bits. */ for (i = 2; i > 0; i--) { mdio_out(MDIO_ENB_IN, mdio_addr); mdio_delay(mdio_addr); mdio_out(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(mdio_addr); } return; } /* * Local variables: * compile-command: "cc -O -Wall -Wstrict-prototypes -o ns820-diag ns820-diag.c `[ -f libmii.c ] && echo -DLIBMII libmii.c` `[ -f libmii.c ] && echo -DLIBFLASH libflash.c`" * simple-compile-command: "cc -O -Wall -o ns820-diag ns820-diag.c" * tab-width: 4 * c-indent-level: 4 * c-basic-offset: 4 * End: */