/* epic-diag.c: Diagnostics and EEPROM setup program for the SMC EPIC-100 chip. This is a diagnostic and EEPROM setup program for Ethernet adapters based on the SMC83C170 series EPIC/100 chip, as used on the SMC EtherPowerII boards. Copyright 1998-2002 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Contact the author for use under other terms. This program must be compiled with "-O"! See the bottom of this file for the suggested compile-command. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 914 Bay Ridge Road, Suite 220 Annapolis MD 21403 Updates and additional information are available at http://www.scyld.com/diag/index.html References http://scyld.com/expert/mii-status.html http://www.scyld.com/expert/NWay.html http://www.smsc.com/main/datasheets/83c171.pdf http://www.smsc.com/main/datasheets/83c175.pdf http://www.national.com/pf/DP/DP83840A.html Common-sense licensing statement: Using any portion of this program in your own program means that you must give credit to the original author and release the resulting code under the GPL. To use this code under other terms requires an explicit license from the copyright holder. */ static char *version_msg = "epic-diag.c:v2.04 2/28/2005 Donald Becker (becker@scyld.com)\n" " http://www.scyld.com/diag/index.html\n"; static char *usage_msg = "Usage: epic-diag [-aDEefFGhmqrRtvVwW] [-p ] [-[AF] ]\n" " For details and other options see http://www.scyld.com/diag/index.html\n"; static const char long_usage_msg[] = "Usage: %s [-aDfrRvVw] [-AF ] [-#]\n\ \n\ Show the internal state of a network adapter.\n\ \n\ The common usage is\n\ epic-diag -aem\n\ \n\ Frequently used options are\n\ -a --show_all_registers Print all registers.\n\ -e --show-eeprom Dump EEPROM contents, \"-ee\" shows the details.\n\ -m --show_mii Print the MII transceiver state\n\ Using -mm monitors the link.\n\ -f --force Perform operation, even on a running NIC.\n\ \n\ To operate on a single NIC, or one that hasn't been automatically found:\n\ -# --card_num INDEX Operate on the specified card index.\n\ -p --port-base IOADDR Assume an adapter at the specified I/O address.\n\ -t --chip-type TYPE Specify adapter type (with '-p'), use '-1' to list.\n\ \n\ To change the persistent EEPROM settings\n\ -F, --new-interface N Set the default transceiver type.\n\ -G --parameters PARMS Set adapter-specific parameters.\n\ -H --new-hwaddr 01:23:45:67:89:ab\n\ Set a new hardware station address. Typically disabled for safety.\n\ -w --write-EEPROM Actually write the new settings into the EEPROM.\n\ To read and write the boot BIOS extension Flash ROM\n\ -B Show the first few bytes of the ROM\n\ -L FILE Load the Flash from FILE.\n\ -S FILE Store the Flash image to FILE.\n\ \n\ -D --debug\n\ -v --verbose Report each action taken.\n\ -V --version Emit version information.\n\ \n\ -A --advertise (See the mii-diag manual page.)\n\ \n"; #if ! defined(__OPTIMIZE__) #warning You must compile this program with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include #include #include #include #include #include #include #if defined(__linux__) && __GNU_LIBRARY__ == 1 #include /* Newer libraries use instead. */ #else #include #endif /* No libmii.h or libflash.h yet, thus the declarations here. */ extern int show_mii_details(long ioaddr, int phy_id); extern int monitor_mii(long ioaddr, int phy_id); extern int flash_show(long addr_ioaddr, long data_ioaddr); extern int flash_dump(long addr_ioaddr, long data_ioaddr, char *filename); extern int flash_program(long addr_ioaddr, long data_ioaddr, char *filename); extern int (*flash_in_hook)(long addr, int offset); extern void (*flash_out_hook)(long addr, int offset, int val); struct option longopts[] = { /* { name has_arg *flag val } */ {"card-num", 1, 0, '#'}, /* Operate on the specified card index. */ {"Advertise", 1, 0, 'A'}, {"base-address", 1, 0, 'p'}, {"show_all_registers", 0, 0, 'a'}, /* Print all registers. */ {"help", 0, 0, 'h'}, /* Print a long usage message. */ {"show-eeprom", 0, 0, 'e'}, /* Dump EEPROM contents (or -ee,-eee). */ {"emergency-rewrite", 0, 0, 'E'}, /* Re-write a corrupted EEPROM. */ {"force-detection", 0, 0, 'f'}, {"new-interface", 1, 0, 'F'}, /* New interface (built-in, AUI, etc.) */ {"new-hwaddr", 1, 0, 'H'}, /* Set a new hardware address. */ {"show-mii", 0, 0, 'm'}, /* Dump MII management registers. */ {"port-base", 1, 0, 'p'}, /* Use the specified I/O address. */ {"quiet", 0, 0, 'q'}, /* Decrease verbosity */ {"reset", 0, 0, 'R'}, /* Reset chip. */ {"chip-type", 1, 0, 't'}, /* Assume the specified chip type index. */ {"test", 0, 0, 'T'}, /* Do register and SRAM test. */ {"verbose", 0, 0, 'v'}, /* Verbose mode */ {"version", 0, 0, 'V'}, /* Display version number */ {"write-EEPROM", 1, 0, 'w'},/* Actually write the EEPROM with new vals */ { 0, 0, 0, 0 } }; extern int epic_diag(int vend_id, int dev_id, long ioaddr, int part_idx); /* The table of known chips. Because of the bogus /proc/pci interface we must have both the exact name from the kernel, a common name and the PCI vendor/device IDs. This table is searched in order: place specific entries followed by 'catch-all' general entries. */ struct pcidev_entry { const char *part_name; const char *proc_pci_name; int vendor, device, device_mask; int flags; int io_size; int (*diag_func)(int vendor_id, int device_id, long ioaddr, int part_idx); } pcidev_tbl[] = { {"SMSC EPIC/100 83c170", "SMC 9432 TX", 0x10B8, 0x0005, 0xffff, 0, 32, epic_diag}, {"SMSC EPIC/C 83c175", 0, 0x10B8, 0x0006, 0xffff, 0, 32, epic_diag}, { 0, 0, 0, 0}, }; int verbose = 1, opt_f = 0, debug = 0; int show_regs = 0, show_eeprom = 0, show_mii = 0; unsigned int opt_a = 0, /* Show-all-interfaces flag. */ opt_restart = 0, opt_reset = 0, opt_watch = 0, opt_G = 0; unsigned int opt_GPIO = 0; /* General purpose I/O setting. */ int do_write_eeprom = 0, do_test = 0; int nway_advertise = 0, fixed_speed = -1; int new_default_media = -1; /* Valid with libflash only. */ static unsigned int opt_flash_show = 0; static char *opt_flash_dumpfile = NULL, *opt_flash_loadfile = NULL; static unsigned char new_hwaddr[6], set_hwaddr = 0; static int emergency_rewrite = 0; static int scan_proc_pci(int card_num); static int parse_media_type(const char *capabilities); static int get_media_index(const char *name); /* Other chip-specific options. */ static int LED_setting = -1; int main(int argc, char **argv) { int port_base = 0, chip_type = 0; int errflag = 0, show_version = 0; int c, longind; int card_num = 0; extern char *optarg; while ((c = getopt_long(argc, argv, "#:aA:DeEfF:G:hH:mp:qrRst:vVwWBL:S:", longopts, &longind)) != -1) switch (c) { case '#': card_num = atoi(optarg); break; case 'a': show_regs++; opt_a++; break; case 'A': nway_advertise = parse_media_type(optarg); break; case 'D': debug++; break; case 'e': show_eeprom++; break; case 'E': emergency_rewrite++; break; case 'f': opt_f++; break; case 'F': new_default_media = get_media_index(optarg); if (new_default_media < 0) errflag++; break; case 'G': opt_G++; opt_GPIO = strtoul(optarg, NULL, 16); break; case 'h': fprintf(stderr, long_usage_msg, argv[0]); return 0; case 'H': { int hwaddr[6], i; if (sscanf(optarg, "%2x:%2x:%2x:%2x:%2x:%2x", hwaddr, hwaddr + 1, hwaddr + 2, hwaddr + 3, hwaddr + 4, hwaddr + 5) == 6) { for (i = 0; i < 6; i++) new_hwaddr[i] = hwaddr[i]; set_hwaddr++; } else errflag++; break; } case 'm': show_mii++; break; case 'p': port_base = strtoul(optarg, NULL, 16); break; case 'q': if (verbose) verbose--; break; case 'r': opt_restart++; break; case 'R': opt_reset++; break; case 't': chip_type = atoi(optarg); break; case 'v': verbose++; break; case 'V': show_version++; break; case 'w': do_write_eeprom++; break; case 'W': opt_watch++; break; case 'B': opt_flash_show++; break; case 'L': opt_flash_loadfile = optarg; break; case 'S': opt_flash_dumpfile = optarg; break; case '?': errflag++; } if (errflag) { fprintf(stderr, usage_msg); return 3; } if (verbose || show_version) printf(version_msg); if (chip_type < 0 || chip_type >= sizeof(pcidev_tbl)/sizeof(pcidev_tbl[0]) - 1) { int i; fprintf(stderr, "Valid numeric chip types are:\n"); for (i = 0; pcidev_tbl[i].part_name; i++) { fprintf(stderr, " %d\t%s\n", i, pcidev_tbl[i].part_name); } return 3; } /* Get access to all of I/O space. */ if (iopl(3) < 0) { perror("Network adapter diagnostic: iopl()"); fprintf(stderr, "This program must be run as root.\n"); return 2; } /* Try to read a likely port_base value from /proc/pci. */ if (port_base) { printf("Assuming a %s adapter at %#x.\n", pcidev_tbl[chip_type].part_name, port_base); pcidev_tbl[chip_type].diag_func(0, 0, port_base, chip_type); } else if ( scan_proc_pci(card_num) == 0) { fprintf(stderr, "Unable to find a recognized card in /proc/pci.\nIf there is" " a card in the machine, explicitly set the I/O port" " address\n using '-p -t '\n" " Use '-t -1' to see the valid chip types.\n"); return ENODEV; } if (show_regs == 0 && show_eeprom == 0 && show_mii == 0) printf(" Use '-a' or '-aa' to show device registers,\n" " '-e' to show EEPROM contents, -ee for parsed contents,\n" " or '-m' or '-mm' to show MII management registers.\n"); return 0; } /* Generic (all PCI diags) code to find cards. */ static char bogus_iobase[] = "This chip has not been assigned a valid I/O address, and will not function.\n" " If you have warm-booted from another operating system, a complete \n" " shut-down and power cycle may restore the card to normal operation.\n"; static char bogus_irq[] = "This chip has not been assigned a valid IRQ, and will not function.\n" " This must be fixed in the PCI BIOS setup. The device driver has no way\n" " of changing the PCI IRQ settings.\n" " See http://www.scyld.com/expert/irq-conflict.html for more information.\n"; static int scan_proc_bus_pci(int card_num) { int card_cnt = 0, chip_idx = 0; int port_base; char buffer[514]; unsigned int pci_bus, pci_devid, irq, pciaddr0, pciaddr1; int i; FILE *fp = fopen("/proc/bus/pci/devices", "r"); if (fp == NULL) { if (debug) fprintf(stderr, "Failed to open /proc/bus/pci/devices.\n"); return -1; } while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parsing line -- %s", buffer); if (sscanf(buffer, "%x %x %x %x %x", &pci_bus, &pci_devid, &irq, &pciaddr0, &pciaddr1) <= 0) break; for (i = 0; pcidev_tbl[i].vendor; i++) { if ((pci_devid >> 16) != pcidev_tbl[i].vendor || (pci_devid & pcidev_tbl[i].device_mask) != pcidev_tbl[i].device) continue; chip_idx = i; card_cnt++; /* Select the I/O address. */ port_base = pciaddr0 & 1 ? pciaddr0 & ~1 : pciaddr1 & ~1; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (irq == 0 || irq == 255) printf(bogus_irq); if (port_base) pcidev_tbl[chip_idx].diag_func(0,0,port_base, i); else printf(bogus_iobase); break; } } } fclose(fp); return card_cnt; } static int scan_proc_pci(int card_num) { int card_cnt = 0, chip_idx = 0; char chip_name[40]; FILE *fp; int port_base; if ((card_cnt = scan_proc_bus_pci(card_num)) >= 0) return card_cnt; card_cnt = 0; fp = fopen("/proc/pci", "r"); if (fp == NULL) return 0; { char buffer[514]; int pci_bus, pci_device, pci_function, vendor_id, device_id; int state = 0; if (debug) printf("Done open of /proc/pci.\n"); while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parse state %d line -- %s", state, buffer); if (sscanf(buffer, " Bus %d, device %d, function %d", &pci_bus, &pci_device, &pci_function) > 0) { chip_idx = 0; state = 1; continue; } if (state == 1) { if (sscanf(buffer, " Ethernet controller: %39[^\n]", chip_name) > 0) { int i; if (debug) printf("Named ethernet controller %s.\n", chip_name); for (i = 0; pcidev_tbl[i].part_name; i++) if (pcidev_tbl[i].proc_pci_name && strncmp(pcidev_tbl[i].proc_pci_name, chip_name, strlen(pcidev_tbl[i].proc_pci_name)) == 0) { state = 2; chip_idx = i; continue; } continue; } /* Handle a /proc/pci that does not recognize the card. */ if (sscanf(buffer, " Vendor id=%x. Device id=%x", &vendor_id, &device_id) > 0) { int i; if (debug) printf("Found vendor 0x%4.4x device ID 0x%4.4x.\n", vendor_id, device_id); for (i = 0; pcidev_tbl[i].vendor; i++) if (vendor_id == pcidev_tbl[i].vendor && (device_id & pcidev_tbl[i].device_mask) == pcidev_tbl[i].device) break; if (pcidev_tbl[i].vendor == 0) continue; chip_idx = i; state = 2; } } if (state == 2) { if (sscanf(buffer, " I/O at %x", &port_base) > 0) { card_cnt++; state = 3; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (port_base) pcidev_tbl[chip_idx].diag_func (vendor_id, device_id, port_base, chip_idx); else printf(bogus_iobase); } } } } } fclose(fp); return card_cnt; } /* Convert a text media name to a NWay capability word. */ static int parse_media_type(const char *capabilities) { const char *mtypes[] = { "100baseT4", "100baseTx", "100baseTx-FD", "100baseTx-HD", "10baseT", "10baseT-FD", "10baseT-HD", 0, }; char *endptr; int cap_map[] = { 0x0200, 0x0180, 0x0100, 0x0080, 0x0060, 0x0040, 0x0020,}; int i; if (debug) fprintf(stderr, "Advertise string is '%s'.\n", capabilities); for (i = 0; mtypes[i]; i++) if (strcasecmp(mtypes[i], capabilities) == 0) return cap_map[i]; i = strtoul(capabilities, &endptr, 16); if (*endptr == 0 && 0 < i && i <= 0xffff) return i; fprintf(stderr, "Invalid media advertisement '%s'.\n", capabilities); return 0; } /* Return the index of a valid media name. 0x0800 Power up autosense (check speed only once) 0x8000 Dynamic Autosense */ /* A table of media names to indices. This matches the Digital Tulip SROM numbering, primarily because that is the most complete list. Other chips will have to map these number to their internal values. */ struct { char *name; int value; } mediamap[] = { { "10baseT", 0 }, { "10base2", 1 }, { "AUI", 2 }, { "100baseTx", 3 }, { "10baseT-FDX", 0x204 }, { "100baseTx-FDX", 0x205 }, { "100baseT4", 6 }, { "100baseFx", 7 }, { "100baseFx-FDX", 8 }, { "MII", 11 }, { "Autosense", 0x0800 }, { 0, 0 }, }; static int get_media_index(const char *name) { char *endptr; int i; if (! name) return -1; for (i = 0; mediamap[i].name; i++) if (strcasecmp(name, mediamap[i].name) == 0) return i; i = strtol(name, &endptr, 0); if (*endptr == 0) return i; fprintf(stderr, "Invalid interface specified. It must be one of\n"); for (i = 0; mediamap[i].name; i++) fprintf(stderr, " %d %s\n", mediamap[i].value, mediamap[i].name); return -1; } /* Chip-specific section. */ /* Offsets to registers, using the (ugh) SMC names. */ enum epic_registers { COMMAND=0, IntrStatus=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14, TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */ MIICtrl=0x30, MIIData=0x34, MIICfg=0x38, LAN0=64, /* MAC address. */ MC0=80, /* Multicast filter table. */ RxCtrl=96, TxCtrl=0x70, TxSTAT=0x74, PRxCDAR=0x84, RxSTAT=0xA4, PTxCDAR=0xC4, TxThresh=0xDC, }; /* Interrupt register bits, using my own meaningful names. */ enum IntrStatus { TxIdle=0x40000, RxIdle=0x20000, CntFull=0x0200, TxUnderrun=0x0100, TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010, RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001, }; static int read_eeprom(long ioaddr, int location, int addr_len); static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len); static void write_eeprom(long ioaddr, int index, int value, int addr_len); static int do_update(long ioaddr, int index, int addr_len, const char *field_name, int old_value, int new_value); int mdio_read(long ioaddr, int phy_id, int location); void mdio_write(long ioaddr, int phy_id, int location, int value); static void parse_eeprom(unsigned short *ee_data); /* The interrupt flags. */ const char *intr_names[28] ={ "Rx Copy Done", "Rx Header Done", "Rx Queue Empty", "Rx Buffer Overflow", "Rx CRC error", "Tx done", "Tx chain done", "Tx Queue empty", "Tx underrun", "Counter overflow", "Rx almost done", "Rx threshold crossed", "Fatal Interrupt summary", "PCI master abort", "PCI target abort", "PHY event", "Interrupt active", "Rx idle", "Tx idle", "Rx copy in progress", "Tx copy in progress", "Rx buffers empty", "Early Rx threshold passed", "Rx status valid", "PCI Data Parity Error", "PCI Address Parity Error", "PCI Master abort", "PCI Target Abort", }; /* Non-interrupting events. */ const char *event_names[16] = { "Tx Abort", "Rx frame complete", "Transmit done", }; #define EEPROM_BUF_SIZE 256 /* Last-hope recovery major boo-boos: rewrite the EEPROM with the values from my card (and hope I don't met you on the net...). */ unsigned short djb_epic_eeprom[EEPROM_BUF_SIZE] = { /* Currently invalid! */ }; /* Values read from the EEPROM, and a new image to write. */ unsigned short eeprom_contents[EEPROM_BUF_SIZE]; unsigned short new_ee_contents[EEPROM_BUF_SIZE]; #define EE_READ_CMD (6) #define EEPROM_SA_OFFSET 0x00 int epic_diag(int vendor_id, int device_id, long ioaddr, int part_idx) { int chip_active = 0, chip_lowpower = 0; unsigned int rx_ctrl = inl(ioaddr + RxCtrl); unsigned int genctrl = inl(ioaddr + GENCTL); int eeprom_size = 64, eeprom_addr_size = 6; int i; /* It's mostly safe to examine the registers and EEPROM during operation. But warn the user, and make then pass '-f'. */ if (genctrl == 0xffffffff && !opt_f) { printf(" * A recognized chip has been found, but it is not " "responding.\n Use the '-f' flag to continue anyway.\n"); return 1; } if (opt_reset) { genctrl &= ~0x0008; outl(genctrl | 0x201, ioaddr + GENCTL); printf("Resetting the EPIC.\n"); outl(genctrl, ioaddr + GENCTL); } else if (genctrl & 0x0008) { chip_lowpower = 1; genctrl &= ~0x0008; outl(genctrl, ioaddr + GENCTL); /* Wake up chip. */ } else if ((rx_ctrl & 0x003F) != 0x0000) chip_active = 1; if (opt_restart) { #if 0 outl(0xd823, ioaddr + NVCTL); #else outl(0x10, ioaddr + MIICfg); outl(genctrl | 0x4000, ioaddr + GENCTL); sleep(1); outl(genctrl & ~0x4000, ioaddr + GENCTL); #endif } /* Undocumented bit that must be set for the chip to work. */ outl(0x8, ioaddr + TEST1); /* Set the general purpose output LED lines. Oh, and we reset the modem too. */ if (LED_setting >= 0) { unsigned nvctl = inl(ioaddr + NVCTL) & ~0x70; /* Enable the modem as well. */ outl(((LED_setting<<4) & 0x30) | nvctl | 0x0040, ioaddr + NVCTL); outl(0x4C00, ioaddr + 0x80); /* Toggle the modem reset line. */ printf("Resetting the modem.\n"); outl(0x4C80, ioaddr + 0x80); outl(0x0020, ioaddr + 0x8C); /* Enable Binary Audio */ outl(((LED_setting<<4) & 0x30) | nvctl, ioaddr + NVCTL); } if (verbose || show_regs) { unsigned intr_status; if (chip_active && !opt_f) { printf("The EPIC/100 chip appears to be active, so some registers" " will not be read.\n" "To see all register values use the '-f' flag.\n"); } else chip_active = 0; /* Ignore the chip status with -f */ if (opt_a > 1) { /* Reading some registers hoses the chip operation. */ char dont_read[8] = {0x00, 0x00, 0x00, 0xce, 0xfd, 0xed, 0x7d, 0xff}; printf("EPIC chip registers at %#x", (int) ioaddr); for (i = 0; i < 0x100; i += 4) { if ((i & 0x1f) == 0) printf("\n 0x%3.3X:", i); if (chip_active && (dont_read[i>>5]) & (1<<((i>>2) & 7))) printf(" ********"); else printf(" %8.8x", inl(ioaddr + i)); } printf("\n"); } intr_status = inw(ioaddr + IntrStatus); printf(" %snterrupt sources are pending.\n", (intr_status & inw(ioaddr + INTMASK)) ? "I": "No i"); if (intr_status) { for (i = 0; i < sizeof(intr_names)/sizeof(intr_names[0]); i++) if (intr_status & (1<>1) & 3]); printf(" Last transmit %s, %d collisions%s.\n", last_tx & 1 ? "OK" : "FAILED!!", (last_tx>>8) & 0x1f, last_tx & 0x80 ? ", currently deferring to traffic!":""); printf(" Receiver control is %4.4x, %s mode.\n", rx_ctrl, rx_ctrl & 0x40 ? "monitor only" : rx_ctrl & 0x20 ? "promiscuous" : rx_ctrl & 8 ? "multicast" : "normal"); printf(" The last Rx frame was %d bytes, status %x%s%s%s%s%s%s%s.\n", inl(ioaddr + 0x68), last_rx, last_rx&0x40 ? ", Rx disabled" : "", last_rx&0x20 ? ", broadcast" : "", last_rx&0x10 ? ", multicast" : "", last_rx&0x08 ? ", Missed/Overflow" : "", last_rx&0x04 ? ", CRC Error!" : "", last_rx&0x02 ? ", Alignment Error!" : "", last_rx&0x02 ? " received OK." : "" ); } } if (opt_GPIO) { printf("Setting the GPIO register %8.8x.\n", opt_GPIO); outl(opt_GPIO, ioaddr + NVCTL); } /* Read the EEPROM. */ if (show_eeprom || set_hwaddr) { int size_test = do_eeprom_cmd(ioaddr, (EE_READ_CMD << 8) << 16, 27); eeprom_addr_size = (size_test & 0xffe0000) == 0xffe0000 ? 8 : 6; eeprom_size = 1 << eeprom_addr_size; if (debug) printf("EEPROM size probe returned %#x, %d bit address.\n", size_test, eeprom_addr_size); for (i = 0; i < 64 /* Not eeprom_size! */; i++) eeprom_contents[i] = read_eeprom(ioaddr, i, eeprom_addr_size); } if (set_hwaddr) { unsigned char sum = 0; const char *const field_names[] = { "MAC address 0/1", "MAC address 2/3", "MAC address 4/5", "Checksum/Board-ID"}; memcpy(new_ee_contents, eeprom_contents, 64 << 1); for (i = 0; i < 3; i++) { new_ee_contents[i + EEPROM_SA_OFFSET] = new_hwaddr[i*2] + (new_hwaddr[i*2+1]<<8); sum += new_hwaddr[i*2] + new_hwaddr[i*2+1]; } sum += new_ee_contents[i]; /* Board ID, implicit truncation! */ printf("Writing new MAC station address, checksum %2.2x.\n", sum); /* Explicit bit ops to avoid endian issues. */ new_ee_contents[i] = (new_ee_contents[i] & 0xff) | (-sum << 8); if (debug) printf("new_ee_contents[%d] is %4.4x.\n", i, new_ee_contents[i]); for (i = EEPROM_SA_OFFSET; i < EEPROM_SA_OFFSET + 5; i++) if (new_ee_contents[i] != eeprom_contents[i]) do_update(ioaddr, i, eeprom_addr_size, field_names[i], eeprom_contents[i], new_ee_contents[i]); /* Re-read all contents. */ for (i = 0; i < 64; i++) eeprom_contents[i] = read_eeprom(ioaddr, i, eeprom_addr_size); } if (show_eeprom > 1) { unsigned short sum = 0; printf("EEPROM contents (size: %s):", inl(ioaddr + EECTL) & 0x40 ? "64x16" : "256x16"); for (i = 0; i < eeprom_size; i++) { printf("%s %4.4x", (i & 7) == 0 ? "\n " : "", eeprom_contents[i]); sum += eeprom_contents[i]; } printf("\n The word-wide EEPROM checksum is %#4.4x.\n", sum); } /* Show the interpreted EEPROM contents. */ if (verbose > 1 || show_eeprom) parse_eeprom(eeprom_contents); /* Show up to four (not just the on-board) PHYs. */ if (verbose > 1 || show_mii) { int phys[4], phy, phy_idx = 0; int mii_reg; outl(genctrl | 0x0200, ioaddr + GENCTL); outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL); phys[0] = 3; /* Default MII address on SMC card. */ for (phy = 1; phy < 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(ioaddr, phy, 0); if (mii_status != 0xffff && mii_status != 0x0000) { phys[phy_idx++] = phy; printf(" MII PHY found at address %d.\n", phy); } } if (phy_idx == 0) { int mii_status = mdio_read(ioaddr, 0, 1); if (mii_status != 0xffff && mii_status != 0x0000) phys[phy_idx++] = 0; else printf(" ***WARNING***: No MII transceivers found!\n"); } for (phy = 0; phy < phy_idx; phy++) { printf(" MII PHY #%d transceiver registers:", phys[phy]); for (mii_reg = 0; mii_reg < 32; mii_reg++) printf("%s %4.4x", (mii_reg % 8) == 0 ? "\n " : "", mdio_read(ioaddr, phys[phy], mii_reg)); printf(".\n"); } #ifdef LIBMII show_mii_details(ioaddr, phys[0]); if (show_mii > 1) monitor_mii(ioaddr, phys[0]); #endif } /* The EPIC chips do not have flash boot ROM access through I/O space, only through the mapped PCI BIOS extension space. No write-enable is needed. */ if (opt_flash_loadfile || opt_flash_dumpfile || opt_flash_show) printf("Flash operations not configured into this program.\n"); if (chip_lowpower) outl(genctrl | 0x0008, ioaddr + GENCTL); return 0; } /* Serial EEPROM section. */ /* The new-style bit definitions. */ enum EEPROM_Ctrl_Bits { EE_ShiftClk=0x04, EE_ChipSelect=0x02, EE_DataOut=0x08, EE_DataIn=0x10, EE_Enb=0x03, EE_Write0=0x03, EE_Write1=0x0B, }; /* The EEPROM commands include the always-set leading bit. They must be shifted by the number of address bits. */ enum EEPROM_Cmds { EE_WriteCmd=5, EE_ReadCmd=6, EE_EraseCmd=7, }; /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ #define EE_CS 0x02 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ #define EE_WRITE_0 0x03 #define EE_WRITE_1 0x0B #define EE_DATA_READ 0x10 /* EEPROM chip data out. */ #define EE_ENB (0x0001 | EE_CS) #define EE_OFFSET EECTL /* Delay between EEPROM clock transitions. */ #define eeprom_delay(ee_addr) inl(ee_addr) /* This executes a generic EEPROM command, typically a write or write enable. It returns the data output from the EEPROM, and thus may also be used for reads. */ static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len) { unsigned retval = 0; long ee_addr = ioaddr + EE_OFFSET; if (debug > 1) printf(" EEPROM op 0x%x: ", cmd); outl(EE_ENB | EE_SHIFT_CLK, ee_addr); /* Shift the command bits out. */ do { short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0; outl(dataval, ee_addr); eeprom_delay(ee_addr); if (debug > 2) printf("%X", inl(ee_addr) & 15); outl(dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay(ee_addr); retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0); } while (--cmd_len >= 0); outl(EE_ENB, ee_addr); /* Terminate the EEPROM access. */ outl(EE_ENB & ~EE_CS, ee_addr); if (debug > 1) printf(" EEPROM result is 0x%5.5x.\n", retval); return retval; } /* Wait for the EEPROM to finish what it is doing. */ static int eeprom_busy_poll(long ee_ioaddr) { int i; outl(EE_ChipSelect, ee_ioaddr); for (i = 0; i < 10000; i++) /* Typical 2000 ticks */ if (inl(ee_ioaddr) & EE_DataIn) break; return i; } /* The abstracted functions for EEPROM access. */ static int read_eeprom(long ioaddr, int location, int addr_len) { return do_eeprom_cmd(ioaddr, ((EE_ReadCmd << addr_len) | location) << 16, 3 + addr_len + 16) & 0xffff; } static void write_eeprom(long ioaddr, int index, int value, int addr_len) { long ee_ioaddr = ioaddr + EE_OFFSET; int i; /* Poll for previous op finished. */ eeprom_busy_poll(ee_ioaddr); /* Enable programming modes. */ do_eeprom_cmd(ioaddr, (0x4f << (addr_len-4)), 3 + addr_len); /* Do the actual write. */ do_eeprom_cmd(ioaddr, (((EE_WriteCmd< 1) printf("MII control register returned %8.8x at loop %d.\n", ctrl, i); if ((ctrl & MII_READOP) == 0) break; } if (debug) printf("MII register %d:%d took %d ticks to read: %8.8x -> %8.8x%s.\n", phy_id, location, i, inl(ioaddr + MIICtrl), inl(ioaddr + MIIData), responded ? "" : ", no transceiver response"); return inw(ioaddr + MIIData); } void mdio_write(long ioaddr, int phy_id, int location, int value) { int i; outw(value, ioaddr + MIIData); outl((phy_id << 9) | (location << 4) | MII_WRITEOP, ioaddr + MIICtrl); for (i = 10000; i > 0; i--) { int ctrl = inl(ioaddr + MIICtrl); if ((ctrl & 0x08) && debug) printf("MII control register returned %8.8x at tick %d.\n", ctrl, 10000 - i); if ((ctrl & MII_WRITEOP) == 0) break; } if (debug) printf("MII register %d:%d took %d ticks to write: %8.8x -> %8.8x.\n", phy_id, location, 10000 - i, inl(ioaddr + MIICtrl), inl(ioaddr + MIIData)); return; } static void parse_eeprom(unsigned short *eeprom) { unsigned char *p = (void *)eeprom; int i; unsigned char sum = 0; for (i = 0; i < 8; i++) sum += p[i]; printf("Interpreted EEPROM contents of a SMSC EPIC:\n Station Address "); /* Little-endian assumption here. */ for (i = 0; i < 5; i++) printf("%2.2X:", p[i]); printf("%2.2X.\n" " Calculated checksum on station address is %2.2x, %scorrect.\n" " Board revision %d, name '%.20s'.\n" " PCI Subsystem ID Vendor/Device %4.4x/%4.4x.\n" " PCI Max latency %d Min grant %d (requested values in 250ns " "units)\n" " Non-volatile Control setting %4.4x:\n" " PCI BAR 1 (memory mapped register) is %s.\n" " GPIO pin 1 is an %s, initial value %d.\n" " GPIO pin 2 is an %s, initial value %d.\n" "\n", eeprom[2] >> 8, sum, sum ? "in" : "", eeprom[3] & 0xff, p + 88, eeprom[6], eeprom[7], eeprom[5] >> 8, eeprom[5] & 0xff, eeprom[4], eeprom[4] & 0x01 ? "enabled" : "disabled", eeprom[4] & 0x04 ? "output" : "input", eeprom[4] & 0x10 ? 1:0, eeprom[4] & 0x08 ? "output" : "input", eeprom[4] & 0x20 ? 1:0 ); return; } /* * Local variables: * compile-command: "cc -O -Wall -o epic-diag epic-diag.c" * alt-compile-command: "cc -O -Wall -o epic-diag epic-diag.c -DLIBMII libmii.c -DLIBFLASH libflash.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */