/* vortex-diag.c: Diagnostics/EEPROM setup for the 3Com Vortex series. This is a diagnostic and EEPROM setup program for Ethernet adapters based on the 3Com Vortex, Boomerang and Cyclone chips, as used on the 3Com 3c590/595/900/905/920 PCI EtherLink XL adapters. Copyright 1997-2004 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Contact the author for use under other terms. This program must be compiled with "-O"! See the bottom of this file for the suggested compile-command. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 914 Bay Ridge Road, Suite 220 Annapolis MD 21403 Updates and additional information available at http://www.scyld.com/diag/index.html http://scyld.com/expert/mii-status.html http://scyld.com/expert/NWay.html Common-sense licensing statement: Using any portion of this program in your own program means that you must give credit to the original author and release the resulting code under the GPL. To use this code under other terms requires an explicit license from the copyright holder. References 3Com Vortex Engineering Release Specification 3Com Boomerang modifications (unreleased) http://www.national.com/pf/DP/DP83840.html */ static char *version_msg = "vortex-diag.c:v2.16 1/12/2004 Donald Becker (becker@scyld.com)\n" " http://www.scyld.com/diag/index.html\n"; static char *usage_msg = "Usage: vortex-diag [-aDEefFgGhmPqrRtvVwW] [-p ] [-[AF] ]\n" " For details and other options see http://www.scyld.com/diag/index.html\n"; static const char long_usage_msg[] = "Usage: %s [-aDfrRvVw] [-AF ] [-#]\n" "\n" " Show the internal state of a network adapter.\n" "\n" " The common usage is\n" " vortex-diag -aem\n" "\n" " Frequently used options are\n" " -a --show_all_registers Print all registers.\n" " -e --show-eeprom Dump EEPROM contents, \"-ee\" shows the details.\n" " -m --show_mii Print the MII transceiver state\n" " Using -mm monitors the link.\n" " -f --force Perform operation, even on a running NIC.\n" "\n" " To operate on a single NIC, or one that hasn't been automatically found:\n" " -# --card_num INDEX Operate on the specified card index.\n" " -p --port-base IOADDR Assume an adapter at the specified I/O address.\n" " -t --chip-type TYPE Specify adapter type (with '-p'), use '-1' to list.\n" "\n" " To change the persistent EEPROM settings\n" " -G --parameters PARMS Set adapter-specific parameters.\n" " -H --new-hwaddr 01:23:45:67:89:ab\n" " Set a new hardware station address. Read the documentation first!\n" " -w --write-EEPROM Actually write the new settings into the EEPROM.\n" " To read and write the boot BIOS extension Flash ROM\n" " -B Show the first few bytes of the ROM\n" " -L FILE Load the Flash from FILE.\n" " -S FILE Store the Flash image to FILE.\n" "\n" " -D --debug\n" " -v --verbose Report each action taken.\n" " -V --version Emit version information.\n" "\n" " -A --advertise (See the mii-diag manual page.)\n" "\n"; #if ! defined(__OPTIMIZE__) #warning You must compile this program with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include #include #include #include #include #include #include #include #include #if defined(__linux__) && __GNU_LIBRARY__ == 1 #include /* Newer libraries use instead. */ #else #include #endif /* No libmii.h or libflash.h yet, thus the declarations here. */ extern int show_mii_details(long ioaddr, int phy_id); extern int monitor_mii(long ioaddr, int phy_id); extern int flash_show(long addr_ioaddr, long data_ioaddr); extern int flash_dump(long addr_ioaddr, long data_ioaddr, char *filename); extern int flash_program(long addr_ioaddr, long data_ioaddr, char *filename); extern int (*flash_in_hook)(long addr, int offset); extern void (*flash_out_hook)(long addr, int offset, int val); /* We should use __u8 .. __u32, but they are not always defined. */ typedef u_int32_t u32; typedef u_int16_t u16; typedef u_int8_t u8; struct option longopts[] = { /* { name has_arg *flag val } */ {"card-num", 1, 0, '#'}, /* Operate on the specified card index. */ {"Advertise", 1, 0, 'A'}, {"base-address", 1, 0, 'p'}, {"show_all_registers", 0, 0, 'a'}, /* Print all registers. */ {"help", 0, 0, 'h'}, /* Print a long usage message. */ {"show-eeprom", 0, 0, 'e'}, /* Dump EEPROM contents (-ee valid). */ {"emergency-rewrite", 0, 0, 'E'}, /* Re-write a corrupted EEPROM. */ {"force-detection", 0, 0, 'f'}, {"new-interface", 1, 0, 'F'}, /* New interface (built-in, AUI, etc.) */ {"new-hwaddr", 1, 0, 'H'}, /* Set a new hardware address. */ {"show-mii", 0, 0, 'm'}, /* Dump MII management registers. */ {"port-base", 1, 0, 'p'}, /* Use the specified I/O address. */ {"quiet", 0, 0, 'q'}, /* Decrease verbosity */ {"restart", 0, 0, 'r'}, /* Restart autonegotiation. */ {"reset", 0, 0, 'R'}, /* Reset the transceiver. */ {"chip-type", 1, 0, 't'}, /* Assume the specified chip type index. */ {"test", 0, 0, 'T'}, /* Do register and SRAM test. */ {"verbose", 0, 0, 'v'}, /* Verbose mode */ {"version", 0, 0, 'V'}, /* Display version number */ {"write-EEPROM", 1, 0, 'w'},/* Actually write the EEPROM with new vals */ { 0, 0, 0, 0 } }; extern int vortex_diag(int vend_id, int dev_id, long ioaddr, int part_idx); /* Chip-specific flags. Yes, it's grungy to have the enum here. */ enum { HAS_FLASH_BUG=1, ROADRUNNER=2, IS_CYCLONE=4 }; /* The table of known chips. Because of the bogus /proc/pci interface we must have both the exact name from the kernel, a common name and the PCI vendor/device IDs. This table is searched in order: place specific entries followed by 'catch-all' general entries. */ struct pcidev_entry { const char *part_name; const char *proc_pci_name; int vendor, device, device_mask; int flags; int io_size; int (*diag_func)(int vendor_id, int device_id, long ioaddr, int part_idx); } pcidev_tbl[] = { {"3Com Generic Vortex/Boomerag/Cyclone", 0, 0x10B7, 0x9999, 0xffff, 0, 256, vortex_diag}, {"3Com 3c590 Vortex 10Mbps", "3Com Vortex (rev ", 0x10B7, 0x5900, 0xffff, 0, 32, vortex_diag}, {"3c592 EISA 10mbps Demon/Vortex", 0, 0x10B7, 0x5920, 0xffff, 0, 32, vortex_diag}, {"3Com 3c595 Vortex 10/100baseTx", "3Com Vortex (rev ", 0x10B7, 0x5950, 0xffff, 0, 32, vortex_diag}, {"3Com 3c595 Vortex 10/100baseT4", 0, 0x10B7, 0x5951, 0xffff, 0, 32, vortex_diag}, {"3Com 3c595 Vortex 10/100baseT-MII", 0, 0x10B7, 0x5952, 0xffff, 0, 32, vortex_diag}, {"3c597 EISA Fast Demon/Vortex", 0, 0x10B7, 0x5970, 0xffff, 0, 32, vortex_diag}, {"3c900 Boomerang 10baseT", "3Com 3C900", 0x10B7, 0x9000, 0xffff, 0, 64, vortex_diag}, {"3c900 Boomerang 10Mbps Combo", 0, 0x10B7, 0x9001, 0xffff, 0, 64, vortex_diag}, {"3c900 Cyclone 10Mbps TPO", 0, 0x10B7, 0x9004, 0xffff, IS_CYCLONE, 256, vortex_diag}, {"3c900 Cyclone 10Mbps Combo", 0, 0x10B7, 0x9005, 0xffff, IS_CYCLONE, 256, vortex_diag}, {"3c900 Cyclone 10Mbps TPC", 0, 0x10B7, 0x9006, 0xffff, IS_CYCLONE, 256, vortex_diag}, {"3c905 Boomerang 100baseTx", "3Com 3C905", 0x10B7, 0x9050, 0xffff, 0, 64, vortex_diag}, {"3c905 Boomerang 100baseT4", 0, 0x10B7, 0x9051, 0xffff, 0, 64, vortex_diag}, {"3c905B Cyclone 100baseTx", 0, 0x10B7, 0x9055, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3c905B Cyclone 10/100/BNC", "3Com 3C905BNC", 0x10B7, 0x9058, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3c905B Cyclone 100baseFx", "3Com 3C905B-FX", 0x10B7, 0x905A, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3c920 (Type 920-2) Cyclone", 0, 0x10B7, 0x9202, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3c920 Series NIC", 0, 0x10B7, 0x9200, 0xff00, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3c980 Cyclone, server edition", 0, 0x10B7, 0x9800, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3c982 Dual Port server NIC", 0, 0x10B7, 0x9805, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3c980 series, server edition", 0, 0x10B7, 0x9800, 0xfff0, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3Com 3cSOHO100-TX", 0, 0x10B7, 0x7646, 0xff00, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3c450 HomePNA Cyclone", 0, 0x10B7, 0x4500, 0xffff, IS_CYCLONE, 256, vortex_diag}, {"3c555 Laptop Hurricane", 0, 0x10B7, 0x5055, 0xffff, HAS_FLASH_BUG, 256, vortex_diag}, {"3c556 Laptop Hurricane", 0, 0x10B7, 0x6055, 0xffff, 0, 256, vortex_diag}, {"3c566 Laptop Tornado", 0, 0x10B7, 0x6056, 0xffff, 0, 256, vortex_diag}, {"3Com 3CCFE556", "3ccfe556 Roadrunner PCMCIA", 0x10B7, 0x0556, 0xffff, ROADRUNNER, 32, vortex_diag}, {"3c575 CardBus", 0, 0x10B7, 0x5057, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 32, vortex_diag}, {"3CCFE575BT CardBus", 0, 0x10B7, 0x5157, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 128, vortex_diag}, {"3CCFE575CT CardBus", 0, 0x10B7, 0x5257, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 128, vortex_diag}, {"3C575 CardBus (unknown version)", 0, 0x10B7, 0x5057, 0x0fff, HAS_FLASH_BUG, 32, vortex_diag}, {"3ccfe656 Cyclone CardBus", 0, 0x10B7, 0x6560, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3Com 3CCFE656B Cyclone+WinModem CardBus", 0, 0x10B7, 0x6562, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3Com 3CCFE656C Tornado CardBus", 0, 0x10B7, 0x6564, 0xffff, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, {"3Com 3CCFE656 Series", 0, 0x10B7, 0x6560, 0xfff0, HAS_FLASH_BUG | IS_CYCLONE, 256, vortex_diag}, /* Added most new/unverified entries here. */ { 0, 0, 0, 0}, }; int verbose = 1, opt_f = 0, debug = 0; int show_regs = 0, show_eeprom = 0, show_mii = 0; unsigned int opt_a = 0, /* Show-all-interfaces flag. */ opt_restart = 0, opt_reset = 0, opt_watch = 0, opt_G = 0; unsigned int opt_GPIO = 0; /* General purpose I/O setting. */ int do_write_eeprom = 0, do_test = 0; int nway_advertise = 0, fixed_speed = -1; int new_default_media = -1; static unsigned int opt_flash_show = 0; static char *opt_flash_dumpfile = NULL, *opt_flash_loadfile = NULL; static unsigned char new_hwaddr[6], set_hwaddr = 0; static int emergency_rewrite = 0; static unsigned set_ee_rom = 0; static int opt_dma_diag = 0; static int scan_proc_pci(int card_num); static int parse_media_type(const char *capabilities); static int get_media_index(const char *name); int main(int argc, char **argv) { int port_base = 0, chip_type = 0; int errflag = 0, show_version = 0; int c, longind; int card_num = 0; extern char *optarg; while ((c = getopt_long(argc, argv, "#:aA:DeEfF:gG:hH:mp:PqrRt:vVwWBL:S:", longopts, &longind)) != -1) switch (c) { case '#': card_num = atoi(optarg); break; case 'a': show_regs++; opt_a++; break; case 'A': nway_advertise = parse_media_type(optarg); break; case 'D': debug++; break; case 'e': show_eeprom++; break; case 'E': emergency_rewrite++; break; case 'f': opt_f++; break; case 'F': new_default_media = get_media_index(optarg); if (new_default_media < 0) errflag++; break; case 'g': opt_dma_diag++; break; case 'G': opt_G++; opt_GPIO = strtoul(optarg, NULL, 0); break; case 'h': fprintf(stderr, long_usage_msg, argv[0]); return 0; case 'H': { int hwaddr[6], i; if (sscanf(optarg, "%2x:%2x:%2x:%2x:%2x:%2x", hwaddr, hwaddr + 1, hwaddr + 2, hwaddr + 3, hwaddr + 4, hwaddr + 5) == 6) { for (i = 0; i < 6; i++) new_hwaddr[i] = hwaddr[i]; set_hwaddr++; } else errflag++; break; } case 'm': show_mii++; break; case 'p': port_base = strtoul(optarg, NULL, 16); break; case 'P': set_ee_rom++; break; case 'q': if (verbose) verbose--; break; case 'r': opt_restart++; break; case 'R': opt_reset++; break; case 't': chip_type = atoi(optarg); break; case 'v': verbose++; break; case 'V': show_version++; break; case 'w': do_write_eeprom++; break; case 'W': opt_watch++; break; case 'B': opt_flash_show++; break; case 'L': opt_flash_loadfile = optarg; break; case 'S': opt_flash_dumpfile = optarg; break; case '?': errflag++; } if (errflag) { fprintf(stderr, usage_msg); return 3; } if (verbose || show_version) printf(version_msg); if (chip_type < 0 || chip_type >= sizeof(pcidev_tbl)/sizeof(pcidev_tbl[0]) - 1) { int i; fprintf(stderr, "Valid numeric chip types are:\n"); for (i = 0; pcidev_tbl[i].part_name; i++) { fprintf(stderr, " %d\t%s\n", i, pcidev_tbl[i].part_name); } return 3; } /* Get access to all of I/O space. */ if (iopl(3) < 0) { perror("Network adapter diagnostic: iopl()"); fprintf(stderr, "This program must be run as root.\n"); return 2; } /* Try to read a likely port_base value from /proc/pci. */ if (port_base) { printf("Assuming a %s adapter at %#x.\n", pcidev_tbl[chip_type].part_name, port_base); pcidev_tbl[chip_type].diag_func(0, 0, port_base, chip_type); } else if ( scan_proc_pci(card_num) == 0) { fprintf(stderr, "Unable to find a recognized card in /proc/pci.\nIf there is" " a card in the machine, explicitly set the I/O port" " address\n using '-p -t '\n" " Use '-t -1' to see the valid chip types.\n"); return ENODEV; } if (show_regs == 0 && show_eeprom == 0 && show_mii == 0) printf(" Use '-a' or '-aa' to show device registers,\n" " '-e' to show EEPROM contents, -ee for parsed contents,\n" " or '-m' or '-mm' to show MII management registers.\n"); return 0; } /* Generic (all PCI diags) code to find cards. */ static char bogus_iobase[] = "This chip has not been assigned a valid I/O address, and will not function.\n" " If you have warm-booted from another operating system, a complete \n" " shut-down and power cycle may restore the card to normal operation.\n"; static char bogus_irq[] = "This chip has not been assigned a valid IRQ, and will not function.\n" " This must be fixed in the PCI BIOS setup. The device driver has no way\n" " of changing the PCI IRQ settings.\n" " See http://www.scyld.com/expert/irq-conflict.html for more information.\n"; static int scan_proc_bus_pci(int card_num) { int card_cnt = 0, chip_idx = 0; int port_base; char buffer[514]; unsigned int pci_bus, pci_devid, irq, pciaddr0, pciaddr1; int i; FILE *fp = fopen("/proc/bus/pci/devices", "r"); if (fp == NULL) { if (debug) fprintf(stderr, "Failed to open /proc/bus/pci/devices.\n"); return -1; } while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parsing line -- %s", buffer); if (sscanf(buffer, "%x %x %x %x %x", &pci_bus, &pci_devid, &irq, &pciaddr0, &pciaddr1) <= 0) break; for (i = 0; pcidev_tbl[i].vendor; i++) { if ((pci_devid >> 16) != pcidev_tbl[i].vendor || (pci_devid & pcidev_tbl[i].device_mask) != pcidev_tbl[i].device) continue; chip_idx = i; card_cnt++; /* Select the I/O address. */ port_base = pciaddr0 & 1 ? pciaddr0 & ~1 : pciaddr1 & ~1; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (irq == 0 || irq == 255) printf(bogus_irq); if (port_base) pcidev_tbl[chip_idx].diag_func(0,0,port_base, i); else printf(bogus_iobase); break; } } } fclose(fp); return card_cnt; } static int scan_proc_pci(int card_num) { int card_cnt = 0, chip_idx = 0; char chip_name[40]; FILE *fp; int port_base; if ((card_cnt = scan_proc_bus_pci(card_num)) >= 0) return card_cnt; card_cnt = 0; fp = fopen("/proc/pci", "r"); if (fp == NULL) return 0; { char buffer[514]; int pci_bus, pci_device, pci_function, vendor_id, device_id; int state = 0; if (debug) printf("Done open of /proc/pci.\n"); while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parse state %d line -- %s", state, buffer); if (sscanf(buffer, " Bus %d, device %d, function %d", &pci_bus, &pci_device, &pci_function) > 0) { chip_idx = 0; state = 1; continue; } if (state == 1) { if (sscanf(buffer, " Ethernet controller: %39[^\n]", chip_name) > 0) { int i; if (debug) printf("Named ethernet controller %s.\n", chip_name); for (i = 0; pcidev_tbl[i].part_name; i++) if (pcidev_tbl[i].proc_pci_name && strncmp(pcidev_tbl[i].proc_pci_name, chip_name, strlen(pcidev_tbl[i].proc_pci_name)) == 0) { state = 2; chip_idx = i; continue; } continue; } /* Handle a /proc/pci that does not recognize the card. */ if (sscanf(buffer, " Vendor id=%x. Device id=%x", &vendor_id, &device_id) > 0) { int i; if (debug) printf("Found vendor 0x%4.4x device ID 0x%4.4x.\n", vendor_id, device_id); for (i = 0; pcidev_tbl[i].vendor; i++) if (vendor_id == pcidev_tbl[i].vendor && (device_id & pcidev_tbl[i].device_mask) == pcidev_tbl[i].device) break; if (pcidev_tbl[i].vendor == 0) continue; chip_idx = i; state = 2; } } if (state == 2) { if (sscanf(buffer, " I/O at %x", &port_base) > 0) { card_cnt++; state = 3; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (port_base) pcidev_tbl[chip_idx].diag_func (vendor_id, device_id, port_base, chip_idx); else printf(bogus_iobase); } } } } } fclose(fp); return card_cnt; } /* Convert a text media name to a NWay capability word. */ static int parse_media_type(const char *capabilities) { const char *mtypes[] = { "100baseT4", "100baseTx", "100baseTx-FD", "100baseTx-HD", "10baseT", "10baseT-FD", "10baseT-HD", 0, }; char *endptr; int cap_map[] = { 0x0200, 0x0180, 0x0100, 0x0080, 0x0060, 0x0040, 0x0020,}; int i; if (debug) fprintf(stderr, "Advertise string is '%s'.\n", capabilities); for (i = 0; mtypes[i]; i++) if (strcasecmp(mtypes[i], capabilities) == 0) return cap_map[i]; i = strtoul(capabilities, &endptr, 16); if (*endptr == 0 && 0 < i && i <= 0xffff) return i; fprintf(stderr, "Invalid media advertisement '%s'.\n", capabilities); return 0; } /* Return the index of a valid media name. 0x0800 Power up autosense (check speed only once) 0x8000 Dynamic Autosense */ /* A table of media names to EEPROM setting. These match the 3Com internal values. */ struct { int value; char *name; } mediamap[] = { { 0, "10baseT-serial"}, { 1, "10Mbps-AUI"}, { 3, "10base2"}, { 5, "100baseFx"}, { 6, "MII/100baseT4"}, { 8, "Autonegotiation"}, { 0, 0 }, }; static int get_media_index(const char *name) { char *endptr; int i; if (! name) return -1; for (i = 0; mediamap[i].name; i++) if (strcasecmp(name, mediamap[i].name) == 0) return i; i = strtol(name, &endptr, 0); if (*endptr == 0) return i; fprintf(stderr, "Invalid interface specified. It must be one of\n"); for (i = 0; mediamap[i].name; i++) fprintf(stderr, " %d %s\n", mediamap[i].value, mediamap[i].name); return -1; } /* Chip-specific section. */ /* The 3Com Vortex/Boomerang/Cyclone designs. */ static void interpret_eeprom(long ioaddr); static void mdio_sync(long ioaddr); int mdio_read(long ioaddr, int phy_id, int location); void mdio_write(long ioaddr, int phy_id, int location, int value); static void show_dma_state(long ioaddr); int vortex_flash_in(long addr, int offset); void vortex_flash_out(long addr, int offset, int val); #define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD) #define EL3_CMD 0x0e enum vortex_cmd { TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, UpStall = 6<<11, UpUnstall = (6<<11)+1, DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, SetTxThreshold = 18<<11, SetTxStart = 19<<11, StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11, }; /* Bits in the general status register. */ enum vortex_status { IntLatch = 0x0001, AdapterFailure = 0x0002, TxComplete = 0x0004, TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, IntReq = 0x0040, StatsFull = 0x0080, DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, DMAInProgress = 1<<11, /* DMA controller is still busy.*/ CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ }; const char *intr_names[13] ={ "Interrupt latch", "Adapter Failure", "Tx Complete", "Tx Available", "Rx Complete", "Rx Early Notice", "Driver Intr Request", "Statistics Full", "DMA Done", "Download Complete", "Upload Complete", "DMA in Progress", "Command in Progress", }; enum Window0 { Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ Wn0EepromData = 12, /* Window 0: EEPROM results register. */ IntrStatus=0x0E, /* Valid in all windows. */ }; #define MAX_EEPROM_SIZE 256 /* In undocumented bogusness, these value depend on the EEPROM size. */ enum Win0_EEPROM_cmds { EEPROM_Read = 2, EEPROM_WRITE = 1, EEPROM_ERASE = 3, EEPROM_EWENB = 0xC, /* Enable erasing/writing for 10 msec. */ EEPROM_EWDIS = 0x0, /* Disable EWENB before 10 msec timeout. */ }; enum Window2 { Wn2_ResetOptions=12, }; enum Window3 { /* Window 3: MAC/config bits. */ Wn3_Config=0, Wn3_MaxPktSz=4, Wn3_MAC_Ctrl=6, Wn3_Options=8, }; enum Window4 { /* Window 4: Xcvr/media bits. */ Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, }; enum Window5 { Wn5_TxThreshold = 0, Wn5_RxFilter = 8, }; /* Media names in Wn3_Config bits 24:20. */ const char *el_medianames[16] ={ "10baseT", "10Mbs AUI", "undefined", "10base2", "100baseTX", "100baseFX", "MII", "undefined", "Autonegotiate", "MII-External", "undefined-10", "undefined-11", "undefined-12", "undefined-13", "undefined-14", "undefined-15", }; /* Media available in Wn3_Options and EEPROM. */ const char *medias[] = { "100baseT4", "100baseTx", "100baseFx", "10baseT", "10base2", "AUI", "MII", "", "10baseFL" }; struct config_name { int val, mask; const char*name;} /* Bits in Wn5_RxFilter. */ static rcvr_mode[] = { {0x05, 0x1f, "Normal unicast"}, {0x15, 0x1f, "Normal unicast and hashed multicast"}, {0x07, 0x0f, "Normal unicast and all multicast"}, {0x08, 0x08, "Promiscuous"}, {0x00, 0x00, "Unknown/invalid"}, }; /* Values read from the EEPROM, and the new image. */ unsigned short eeprom_contents[MAX_EEPROM_SIZE]; unsigned short new_ee_contents[MAX_EEPROM_SIZE]; int vortex_diag(int vendor_id, int dev_id, long ioaddr, int part_idx) { int chip_active = 0; int saved_window = inw(ioaddr + EL3_CMD) >> 13; int flags = pcidev_tbl[part_idx].flags; int internal_config, rx_mode; int i; /* It's mostly safe to examine the registers and EEPROM during operation. But warn the user, and make then pass '-f'. */ #ifdef notdef if ((inl(ioaddr + EL3_CMD) & 0xE000) == 0xE000) chip_active = 1; #endif EL3WINDOW(2); printf(" Station address %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x.\n", inb(ioaddr + 0), inb(ioaddr + 1), inb(ioaddr + 2), inb(ioaddr + 3), inb(ioaddr + 4), inb(ioaddr + 5)); EL3WINDOW(5); rx_mode = inb(ioaddr + Wn5_RxFilter); for (i = 0; rcvr_mode[i].mask; i++) if ((rx_mode & rcvr_mode[i].mask) == rcvr_mode[i].val) break; printf(" Receive mode is 0x%2.2x: %s.\n", rx_mode, rcvr_mode[i].name); if (opt_a) { int io_size = pcidev_tbl[part_idx].io_size; int j; if (!opt_f) { printf("The Vortex chip may be active, so FIFO registers" " will not be read.\n" "To see all register values use the '-f' flag.\n"); } else chip_active = 0; /* Ignore the chip status with -f */ printf("Initial window %d, registers values by window:\n", saved_window); for (j = 0; j < 8; j++) { printf(" Window %d:", j); outw(SelectWindow + j, ioaddr + EL3_CMD); for (i = 0; i < 16; i+=2) { if (j == 1 && i < 4 && ! opt_f) printf(" FIFO"); else printf(" %4.4x", inw(ioaddr + i)); } printf(".\n"); } printf("Vortex chip registers at %#lx", ioaddr); if (io_size > 0x80) io_size = 0x80; for (i = 0x10; i < io_size; i += 4) { if ((i & 0x0f) == 0) printf("\n 0x%3.3lX:", ioaddr + i); if (! opt_f) { if (i == 0x10) printf(" **FIFO**"); else if (i == 0x1c) printf(" *STATUS*"); else printf(" %8.8x", (int)inl(ioaddr + i)); } else printf(" %8.8x", (int)inl(ioaddr + i)); } printf("\n"); if (opt_dma_diag || (flags & IS_CYCLONE)) show_dma_state(ioaddr); } if (opt_G) { #if defined(OPTG_MULTICAST) printf("Setting filter bit, %4.4x.\n", SetFilterBit|0x0400|opt_GPIO); outw(SetRxFilter | 0x15, ioaddr + EL3_CMD); for (i = 0; i < 255; i++) outw(SetFilterBit|0x0000|i, ioaddr + EL3_CMD); outw(SetFilterBit|0x0400|opt_GPIO, ioaddr + EL3_CMD); #elif defined(OPTG_RXTHRESH) printf("Setting the Rx Priority Thrshold to %d bytes.\n", opt_GPIO); outb((opt_GPIO + 0x1f)>>5, ioaddr + 0x3C); printf("Setting the Rx Priority Thrshold to %d bytes.\n", inb(ioaddr + 0x3C)<<5); #else EL3WINDOW(2); outw(opt_GPIO, ioaddr + Wn2_ResetOptions); #endif } EL3WINDOW(3); internal_config = inl(ioaddr + Wn3_Config); if (verbose > 1 || opt_a) { unsigned intr_status = inw(ioaddr + IntrStatus); EL3WINDOW(5); printf(" Indication enable is %4.4x, interrupt enable is %4.4x.\n", inw(ioaddr + 12), inw(ioaddr + 10)); printf(" %snterrupt sources are pending.\n", (intr_status & 0x03ff) ? "I": "No i"); if (intr_status) { for (i = 0; i < 13; i++) if (intr_status & (1<> 20) & 15]); MacCtrl = inw(ioaddr + Wn3_MAC_Ctrl); printf(" MAC settings: %s-duplex%s%s%s.\n", MacCtrl & 0x020 ? "full":"half", MacCtrl & 0x040 ? ", Large packets permitted":"", MacCtrl & 0x100 ? ", 802.1Q flow control":"", MacCtrl & 0x200 ? ", VLT VLAN enabled":""); if (inw(ioaddr + Wn3_MaxPktSz) != 1514) printf("Maximum packet size is %d.\n", inw(ioaddr + Wn3_MaxPktSz)); } EL3WINDOW(2); printf(" Station address set to %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x.\n", inb(ioaddr + 0), inb(ioaddr + 1), inb(ioaddr + 2), inb(ioaddr + 3), inb(ioaddr + 4), inb(ioaddr + 5)); /* This register only exists on certain Cyclone chips. */ printf(" Configuration options %4.4x.\n", inw(ioaddr + Wn2_ResetOptions)); } interpret_eeprom(ioaddr); /* Show up to four (not just the on-board) PHYs. */ if (verbose > 1 || show_mii) { int phys[4], phy, phy_idx = 0; int mii_reg; int saved_media_options; phys[0] = 24; /* Default for most 3Com products. */ EL3WINDOW(3); /* Turn on the MII transceiver for some cards. */ saved_media_options = inw(ioaddr + Wn3_Options); outw((saved_media_options & 0x1ff) | 0x8000, ioaddr + Wn3_Options); EL3WINDOW(4); mdio_sync(ioaddr); for (phy = 1; phy <= 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(ioaddr, phy & 0x1f, 1); if (mii_status != 0xffff && mii_status != 0) { phys[phy_idx++] = phy&0x1f; printf(" MII PHY found at address %d, status %4.4x.\n", phy & 0x1f, mii_status); } } if (phy_idx == 0) printf(" ***WARNING***: No MII transceivers found!\n"); for (phy = 0; phy < phy_idx; phy++) { printf(" MII PHY %d at #%d transceiver registers:", phy, phys[phy]); for (mii_reg = 0; mii_reg < 32; mii_reg++) printf("%s %4.4x", (mii_reg % 8) == 0 ? "\n " : "", mdio_read(ioaddr, phys[phy], mii_reg)); printf(".\n"); } if (opt_reset) { printf("Resetting the transceiver...\n"); mdio_write(ioaddr, phys[phy], 0, 0x8000); } if (phy_idx && nway_advertise > 0) { printf(" Setting the media capability advertisement register of " "PHY #%d to 0x%4.4x.\n", phys[0], nway_advertise | 1); mdio_write(ioaddr, phys[0], 4, nway_advertise | 1); } if (opt_restart) { printf("Restarting negotiation...\n"); mdio_write(ioaddr, phys[0], 0, 0x0000); mdio_write(ioaddr, phys[0], 0, 0x1200); } /* To force 100baseTx-HD do mdio_write(ioaddr, phys[0], 0, 0x2000); */ if (fixed_speed >= 0) { int reg0_val = 0; reg0_val |= (fixed_speed & 0x0180) ? 0x2000 : 0; reg0_val |= (fixed_speed & 0x0140) ? 0x0100 : 0; printf("Setting the speed to \"fixed\", %4.4x.\n", reg0_val); mdio_write(ioaddr, phys[0], 0, reg0_val); } #ifdef LIBMII if (show_mii > 1) show_mii_details(ioaddr, phys[0]); if (opt_watch || show_mii > 2) monitor_mii(ioaddr, phys[0]); #endif EL3WINDOW(3); outw(saved_media_options, ioaddr + Wn3_Options); } #ifdef LIBFLASH /* First, work around a chip buglet: the media must be set to EXT MII to read the flash on one Hurricane rev. */ /* Turn on the MII transceiver for some cards. */ { if (flags & HAS_FLASH_BUG) { EL3WINDOW(3); outl((internal_config & ~0x00f00000)|0x00600000, ioaddr + Wn3_Config); } EL3WINDOW(0); flash_in_hook = vortex_flash_in; flash_out_hook = vortex_flash_out; if (opt_flash_show) flash_show(ioaddr, 0); if (opt_flash_dumpfile) if (flash_dump(ioaddr, 0, opt_flash_dumpfile) < 0) { fprintf(stderr, "Failed to save the old Flash BootROM image " "into file '%s'.\n", opt_flash_dumpfile); EL3WINDOW(3); outl(internal_config, ioaddr + Wn3_Config); EL3WINDOW(saved_window); return 3; } if (opt_flash_loadfile) if (flash_program(ioaddr, 0, opt_flash_loadfile) < 0) { fprintf(stderr, "Failed to load the new Flash BootROM image " "from file '%s'.\n", opt_flash_loadfile); EL3WINDOW(3); outl(internal_config, ioaddr + Wn3_Config); EL3WINDOW(saved_window); return 4; } if (flags & HAS_FLASH_BUG) { EL3WINDOW(3); outl(internal_config, ioaddr + Wn3_Config); } } #else if (opt_flash_loadfile || opt_flash_dumpfile || opt_flash_show) printf("Flash operations not configured into this program.\n"); if (opt_flash_show) { printf("The first few boot ROM bytes are:"); for (i = 0; i < 8; i++) printf(" %2.2x", vortex_flash_in(ioaddr, i)); printf(".\n"); } #endif if (do_test) { int bogus_cnt = 10000; /* Run the built-in-self-test of the SRAM buffer. This is valid only on the boomerang, but we run it unconditionally. */ EL3WINDOW(4); outw(0x0004, ioaddr + Wn4_FIFODiag); while ((inw(ioaddr + Wn4_FIFODiag) & 0x0020) == 0 && --bogus_cnt > 0) inw(ioaddr + Wn4_FIFODiag); if (inw(ioaddr + Wn4_FIFODiag) & 0x0020) printf("SRAM buffer test %s\n", inw(ioaddr + Wn4_FIFODiag) & 0x0010 ? "failed!" : "passed"); else printf("INTERNAL FAILURE -- SRAM buffer test did not complete!\n"); } EL3WINDOW(saved_window); return 0; } /* Serial EEPROM section. */ static int read_eeprom(long ioaddr, int addrlen, int location) { int timer; if (addrlen == 6 && location > 0x3f) location = (location & 0x3f) + ((location<<2) & 0x0f00); outw((2 << addrlen) + location, ioaddr + Wn0EepromCmd); /* Wait for the read to take place, worst-case 162 us. */ for (timer = 1620; timer >= 0; timer--) { if ((inw(ioaddr + Wn0EepromCmd) & 0x8000) == 0) break; } if (debug > 2) fprintf(stderr, " EEPROM read completed in %d ticks, %4.4x.\n", 1620-timer, inw(ioaddr + Wn0EepromData)); return inw(ioaddr + Wn0EepromData); } static void write_eeprom(long ioaddr, int addrlen, int index, int value) { int timer; /* Verify that the EEPROM is idle. */ for (timer = 1620; inw(ioaddr + Wn0EepromCmd) & 0x8000;) if (--timer < 0) goto error_return; /* Enable writing: EEPROM_EWENB | 110000.... */ outw(3 << (addrlen-2), ioaddr + Wn0EepromCmd); for (timer = 400; inw(ioaddr + Wn0EepromCmd) & 0x8000;) { if (--timer < 0) goto error_return; } if (debug) fprintf(stderr, "EEPROM write enable took %d ticks!\n", 400 - timer); outw((EEPROM_ERASE << addrlen) + index, ioaddr + Wn0EepromCmd); for (timer = 16000; inw(ioaddr + Wn0EepromCmd) & 0x8000;) if (--timer < 0) { fprintf(stderr, "EEPROM failed to erase index %d!\n", index); return; } if (debug) fprintf(stderr, "EEPROM erased index %d after %d ticks!\n", index, 16000-timer); outw(3 << (addrlen-2), ioaddr + Wn0EepromCmd); for (timer = 400; inw(ioaddr + Wn0EepromCmd) & 0x8000;) { if (--timer < 0) goto error_return; } if (debug) fprintf(stderr, "EEPROM write enable took %d ticks!\n", 400-timer); outw(value, ioaddr + Wn0EepromData); outw((EEPROM_WRITE << addrlen) + index, ioaddr + Wn0EepromCmd); for (timer = 16000; inw(ioaddr + Wn0EepromCmd) & 0x8000;) if (--timer < 0) goto error_return; if (debug) fprintf(stderr, "EEPROM wrote index %d with 0x%4.4x after %d ticks!\n", index, value, 16000-timer); return; error_return: fprintf(stderr, "Failed to write EEPROM location %d with 0x%4.4x!\n", index, value); } static int do_update(long ioaddr, int addrlen, unsigned short *ee_values, unsigned short *old_ee_values) { int i; EL3WINDOW(0); if (debug) printf("Comparing %d words (address length %d) in do_update().\n", 1< 0 && inw(ioaddr + Wn0EepromCmd) & 0x8000; i--) ; return 0; } static void parse_eeprom(unsigned short *eeprom) { unsigned char *p = (void *)eeprom; /* Assumes little-endian */ u16 *ee = eeprom; int i, sum = 0; printf("Saved EEPROM settings of a 3Com Vortex/Boomerang:\n"); if (eeprom[0x37] == 0x6d50) { printf(" The CardBus product ID is %4.4x %4.4x.\n", eeprom[0], eeprom[1]); p += 0x60; ee += 0x30; } printf(" 3Com Node Address "); for (i = 0; i < 5; i++) printf("%2.2X:", p[i^1]); printf("%2.2X (used as a unique ID only).\n", p[i^1]); printf(" OEM Station address %2.2X", p[1 + 20]); for (i = 1; i < 6; i++) printf(":%2.2X", p[(i^1) + 20]); printf(" (used as the ethernet address).\n"); /* The original 3Com layout did not consider post-Y2K production. */ printf(" Device ID %4.4x, Manufacturer ID %4.4x.\n", ee[3], ee[7]); printf(" Manufacture date (MM/DD/YYYY) %d/%d/%d, division %c," " product %c%c.\n", ((p[8]>>5) & 7) + ((p[9]<<3) & 8), p[8] & 31, (p[9]>>1) + ((p[9]>>1) < 95 ? 2000 : 1900), p[10], p[12], p[13]); if (ee[9] & 0x0800) printf(" A BIOS ROM of size %dKx8 is expected.\n", (ee[9]>>12)*64); else printf(" No BIOS ROM is present.\n"); printf(" Transceiver selection: %s.\n", el_medianames[(ee[19] >> 4) & 15]); printf(" Options: %s duplex, link beat %s.\n", ee[13] & 0x8000 ? "force full" : "negotiated", ee[13] & 0x4000 ? "check disabled" : "required"); printf(" PCI bus requested settings -- minimum grant %d, " "maximum latency %d (250ns units).\n", ((ee[8] & 0x03f0)>>6)*2, (ee[8] & 0xFC00) >> 10); if (ee[0x18]) { int MediaOptions = ee[0x19]; printf(" PCI Subsystem IDs: Vendor %4.4x Device %4.4x.\n", ee[0x17], ee[0x18]); for (i = 0; i < 8; i++) if (MediaOptions & 1<>8)) & 0xff) == ee[0x17] ? "" : "in", (sum ^ (sum>>8)) & 0xff, ee[0x17]); for ( ; i < 0x1A; i++) sum ^= ee[i]; sum ^= sum>>8; printf(" Cyclone format checksum is %scorrect (%#2.2x vs. %#2.2x).\n", (sum & 0xff) == (ee[0x20] & 0xff) ? "" : "in", sum & 0xff, ee[0x20] & 0xff); for (sum = 0, i = 0; i < 0x20*2; i++) sum ^= ((unsigned char *)ee)[i]; printf(" Hurricane format checksum is %scorrect (%#2.2x vs. %#2.2x).\n", sum == (ee[0x20] & 0xff) ? "" : "in", sum, ee[0x20] & 0xff); return; } static void interpret_eeprom(long ioaddr) { int eeaddrlen, eesize, ee_tbl_offset = 0; int e6, eeprom_update = 0; int i; /* Read the EEPROM. */ EL3WINDOW(0); outw(0x5555, ioaddr + Wn0EepromData); e6 = read_eeprom(ioaddr, 6, 0); if (e6 != 0x5555) { if (debug) printf(" EEPROM Address length is 6 bits (%4.4x).\n", read_eeprom(ioaddr, 6, 0)); eeaddrlen = 6; } else { int e8 = read_eeprom(ioaddr, 8, 0); if (debug) printf(" EEPROM address sizing read returned %4.4x/%4.4x.\n", e6, e8); eeaddrlen = (e8 != 0xffff) ? 8 : 6; } eesize = 1 << eeaddrlen; if (debug) printf(" EEPROM address size is %d bits.\n", eeaddrlen); for (i = 0; i < eesize; i++) eeprom_contents[i] = read_eeprom(ioaddr, eeaddrlen, i); if (eeprom_contents[0x37] == 0x6d50) { ee_tbl_offset = 0x30; } else if (eeprom_contents[0] == 0x10b7 || eeprom_contents[0] == 0x1570 || eeprom_contents[0] == 0x2978) { printf(" Questionable EEPROM offset for software information!\n"); ee_tbl_offset = 0x30; } memcpy(new_ee_contents, eeprom_contents, eesize << 1); if (set_hwaddr) { for (i = 0; i < 3; i++) new_ee_contents[ee_tbl_offset + 10 + i] = (new_hwaddr[i*2]<<8) + new_hwaddr[i*2+1]; eeprom_update++; } if (set_ee_rom) { new_ee_contents[ee_tbl_offset + 9] = 0x3001; eeprom_update++; } if (new_default_media >= 0) { new_ee_contents[ee_tbl_offset + 19] &= 0x00ff; new_ee_contents[ee_tbl_offset + 19] |= (new_default_media << 8); eeprom_update++; } if (eeprom_update) { u16 *ee = eeprom_contents + ee_tbl_offset; unsigned short sum = 0; int sum_range = 0x1A, sum_location = 0x20; /* Recalculate the checksum: First find the checksum range and location. */ for (i = 0; i < 0x16; i++) sum ^= ee[i]; if (((sum ^ (sum>>8)) & 0xff) == ee[0x17]) { sum_range = 0x16; sum_location = 0x17; } for ( ; i < 0x1A; i++) sum ^= ee[i]; if (((sum ^ (sum>>8)) & 0xff) == (ee[0x20] & 0xff)) { sum_range = 0x1A; sum_location = 0x20; } for ( ; i < 0x20; i++) sum ^= ee[i]; if (((sum ^ (sum>>8)) & 0xff) == (ee[0x20] & 0xff)) { sum_range = 0x20; sum_location = 0x20; } sum = 0; for (i = 0; i < sum_range; i++) sum ^= new_ee_contents[ee_tbl_offset + i]; new_ee_contents[ee_tbl_offset + sum_location] = (sum ^ (sum>>8)) & 0xff; do_update(ioaddr, eeaddrlen, new_ee_contents, eeprom_contents); for (i = 0; i < eesize; i++) eeprom_contents[i] = read_eeprom(ioaddr, eeaddrlen, i); } if (verbose > 2 || show_eeprom > 1) { unsigned short sum = 0; int previous_row_same = 0; printf("EEPROM format %dx16, configuration table at offset %#x:\n", eesize, ee_tbl_offset); for (i = 0; i < eesize; i += 8) { int j; if (i == 0 || /* Always show first row. */ (memcmp(eeprom_contents+i, eeprom_contents+i - 8, 16) != 0)) { previous_row_same = 0; printf(" %#4.2x:", i); for (j = 0; j < 8; j++) { printf(" %4.4x", eeprom_contents[i + j]); sum += eeprom_contents[i + j]; } if (show_eeprom > 2) { printf(" "); for (j = 0; j < 8; j++) { int ew = eeprom_contents[i + j]; printf("%c%c", isprint(ew & 0xff) ? ew & 0xff : '_', isprint(ew >> 8) ? ew >> 8 : '_' ); } } printf("\n"); } else if ( ! previous_row_same) { previous_row_same = 1; printf(" ...\n"); } } printf("\n The word-wide EEPROM checksum is %#4.4x.\n", sum); } /* The user will usually want to see the interpreted EEPROM contents. */ if (verbose > 1 || show_eeprom) { parse_eeprom(eeprom_contents); } return; } /* Read and write the MII registers using software-generated serial MDIO protocol. It is just different enough from the EEPROM protocol to not share code. The maxium data clock rate is 2.5 Mhz, which is met by the PCI I/O access timing. */ #define mdio_delay(mdio_addr) inw(mdio_addr) #define MDIO_SHIFT_CLK 0x01 #define MDIO_DIR_WRITE 0x04 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) #define MDIO_DATA_READ 0x02 #define MDIO_ENB_IN 0x00 static int mii_preamble_required = 1; static void mdio_sync(long ioaddr) { long mdio_addr = ioaddr + Wn4_PhysicalMgmt; int i; /* Establish sync by sending at least 32 logic ones. */ for (i = 32; i >= 0; i--) { outw(MDIO_DATA_WRITE1, mdio_addr); mdio_delay(mdio_addr); outw(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(mdio_addr); } } int mdio_read(long ioaddr, int phy_id, int location) { int i; int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; unsigned int retval = 0; long mdio_addr = ioaddr + Wn4_PhysicalMgmt; if (verbose > 2) /* Debug: 5 */ printf(" mdio_read(%#lx, %d, %d)..", ioaddr, phy_id, location); if (mii_preamble_required) mdio_sync(ioaddr); /* Shift the read command bits out. */ for (i = 14; i >= 0; i--) { int dataval = (read_cmd&(1< 3) /* Debug: 5 */ printf("%d", (read_cmd & (1 << i)) ? 1 : 0); outw(dataval, mdio_addr); mdio_delay(mdio_addr); outw(dataval | MDIO_SHIFT_CLK, mdio_addr); if (verbose > 3) printf(" %x", (inw(mdio_addr) >> 16) & 0x0f); mdio_delay(mdio_addr); } if (verbose > 3) printf("-> %x", (inw(mdio_addr) >> 16) & 0x0f); if (verbose > 3) /* Debug: 5 */ printf(" \n"); /* Read the two transition, 16 data, and wire-idle bits. */ for (i = 19; i > 0; i--) { outw(MDIO_ENB_IN, mdio_addr); mdio_delay(mdio_addr); retval = (retval << 1) | ((inw(mdio_addr) & MDIO_DATA_READ) ? 1 : 0); outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(mdio_addr); if (verbose > 3) printf(" %x", (inw(mdio_addr) >> 16) & 0x0f); } if (verbose > 2) /* Debug: 5 */ printf(" %4.4x.\n", retval); /* Avoid buggy 3c905B MDIO implementation. */ return (retval & 0x20000) == 0x00000 ? retval>>1 & 0x1ffff : 0; } void mdio_write(long ioaddr, int phy_id, int location, int value) { int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; long mdio_addr = ioaddr + Wn4_PhysicalMgmt; int i; if (verbose > 2) /* Debug: 5 */ printf(" mdio_write(%#lx, %d, %d, %4.4x)..", ioaddr, phy_id, location, value); if (mii_preamble_required) mdio_sync(ioaddr); /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (write_cmd&(1<= 0; i--) { outw(MDIO_ENB_IN, mdio_addr); mdio_delay(mdio_addr); outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(mdio_addr); } return; } int vortex_flash_in(long addr, int offset) { outl(offset, addr + 4); return inb(addr + 8) & 0xff; } void vortex_flash_out(long addr, int offset, int val) { outl(offset, addr + 4); outb(val, addr + 8); } static void show_dma_state(long ioaddr) { int dma_ctrl = inl(ioaddr + 0x20); printf(" DMA control register is %8.8x.\n", dma_ctrl); if (dma_ctrl & 0x0080) { outw(DownStall, ioaddr + EL3_CMD); printf(" DMA control register is %8.8x (during Tx Stall).\n", (int)inl(ioaddr + 0x20)); outw(DownUnstall, ioaddr + EL3_CMD); } printf(" Tx list starts at %8.8x.\n", (int)inl(ioaddr + 0x24)); printf(" Tx FIFO thresholds: min. burst %d bytes, " "priority with %d bytes to empty.\n", inb(ioaddr + 0x2A)<<5, inb(ioaddr + 0x2C)<<5); printf(" Rx FIFO thresholds: min. burst %d bytes, " "priority with %d bytes to full.\n", inb(ioaddr + 0x3E)<<5, inb(ioaddr + 0x3C)<<5); printf(" Poll period Tx %d0 ns., Rx %d ns.\n", inb(ioaddr + 0x2D)<<5, inb(ioaddr + 0x3D)<<5); printf(" Maximum burst recorded Tx %d, Rx %d.\n", inw(ioaddr + 0x78), inw(ioaddr + 0x7A)); } /* * Local variables: * compile-command: "cc -O -Wall -o vortex-diag vortex-diag.c" * alt-compile-command: "cc -O -Wall -o vortex-diag vortex-diag.c -DLIBMII libmii.c -DLIBFLASH libflash.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */