/* starfire-diag.c: Diagnostic and setup for the Adaptec Starfire DuraLAN. This is a diagnostic and EEPROM setup program for PCI adapters based on the following chips: Adaptec 6915 "Starfire" This file contains the complete diagnostic code. Copyright 1998-2000,2005 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Contact the author for use under other terms. This program must be compiled with "-O"! See the bottom of this file for the suggested compile-command. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 914 Bay Ridge Road, Suite 220 Annapolis MD 21403 Updates and additional information are available at http://www.scyld.com/diag/index.html http://scyld.com/expert/mii-status.html http://scyld.com/expert/NWay.html Common-sense licensing statement: Using any portion of this program in your own program means that you must give credit to the original author and release the resulting code under the GPL. To use this code under other terms requires an explicit license from the copyright holder. */ static char *version_msg = "starfire-diag.c:v2.02 2/28/2005 Donald Becker (becker@scyld.com)\n" " http://www.scyld.com/diag/index.html\n"; static char *usage_msg = "Usage: starfire-diag [-aDEefFGhmqrRtvVwW] [-p ] [-[AF] ]\n" " For details and other options see http://www.scyld.com/diag/index.html\n"; static const char long_usage_msg[] = "Usage: %s [-aDfrRvVw] [-AF ] [-#]\n\ \n\ Show the internal state of a network adapter.\n\ \n\ The common usage is\n\ starfire-diag -aem\n\ \n\ Frequently used options are\n\ -a --show_all_registers Print all registers.\n\ -e --show-eeprom Dump EEPROM contents, \"-ee\" shows the details.\n\ -m --show_mii Print the MII transceiver state\n\ Using -mm monitors the link.\n\ -f --force Perform operation, even on a running NIC.\n\ \n\ To operate on a single NIC, or one that hasn't been automatically found:\n\ -# --card_num INDEX Operate on the specified card index.\n\ -p --port-base IOADDR Assume an adapter at the specified I/O address.\n\ -t --chip-type TYPE Specify adapter type (with '-p'). Use '-1' to\n\ list available types indicies.\n\ \n\ To change the persistent EEPROM settings\n\ -F, --new-interface N Set the default transceiver type.\n\ -G --parameters PARMS Set adapter-specific parameters.\n\ -H --new-hwaddr 01:23:45:67:89:ab\n\ Set a new hardware station address. Typically disabled for safety.\n\ -w --write-EEPROM Actually write the new settings into the EEPROM.\n\ To read and write the boot BIOS extension Flash ROM\n\ -B Show the first few bytes of the ROM\n\ -L FILE Load the Flash from FILE.\n\ -S FILE Store the Flash image to FILE.\n\ \n\ -D --debug\n\ -v --verbose Report each action taken.\n\ -V --version Emit version information.\n\ \n\ -A --advertise (See the mii-diag manual page.)\n\ \n"; #if ! defined(__OPTIMIZE__) #warning You must compile this program with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include #include #include #include #include #include #include #if defined(__linux__) && __GNU_LIBRARY__ == 1 #include /* Newer libraries use instead. */ #else #include #endif /* No libmii.h or libflash.h yet, thus the declarations here. */ extern int show_mii_details(long ioaddr, int phy_id); extern int monitor_mii(long ioaddr, int phy_id); extern int flash_show(long addr_ioaddr, long data_ioaddr); extern int flash_dump(long addr_ioaddr, long data_ioaddr, char *filename); extern int flash_program(long addr_ioaddr, long data_ioaddr, char *filename); extern int (*flash_in_hook)(long addr, int offset); extern void (*flash_out_hook)(long addr, int offset, int val); /* We should use __u8 .. __u32, but they are not always defined. */ typedef u_int32_t u32; typedef u_int16_t u16; typedef u_int8_t u8; struct option longopts[] = { /* { name has_arg *flag val } */ {"card-num", 1, 0, '#'}, /* Operate on the specified card index. */ {"Advertise", 1, 0, 'A'}, {"base-address", 1, 0, 'p'}, {"show_all_registers", 0, 0, 'a'}, /* Print all registers. */ {"help", 0, 0, 'h'}, /* Print a long usage message. */ {"show-eeprom", 0, 0, 'e'}, /* Dump EEPROM contents (-ee valid). */ {"emergency-rewrite", 0, 0, 'E'}, /* Re-write a corrupted EEPROM. */ {"force-detection", 0, 0, 'f'}, {"new-interface", 1, 0, 'F'}, /* New interface (built-in, AUI, etc.) */ {"new-hwaddr", 1, 0, 'H'}, /* Set a new hardware address. */ {"show-mii", 0, 0, 'm'}, /* Dump MII management registers. */ {"port-base", 1, 0, 'p'}, /* Use the specified I/O address. */ {"quiet", 0, 0, 'q'}, /* Decrease verbosity */ {"reset", 0, 0, 'R'}, /* Reset the transceiver. */ {"chip-type", 1, 0, 't'}, /* Assume the specified chip type index. */ {"test", 0, 0, 'T'}, /* Do register and SRAM test. */ {"verbose", 0, 0, 'v'}, /* Verbose mode */ {"version", 0, 0, 'V'}, /* Display version number */ {"write-EEPROM", 1, 0, 'w'},/* Actually write the EEPROM with new vals */ { 0, 0, 0, 0 } }; extern int starfire_diag(int vend_id, int dev_id, long ioaddr, int part_idx); /* Chip-specific flags. Yes, it's grungy to have the enum here. */ /* The table of known chips. Because of the bogus /proc/pci interface we must have both the exact name from the kernel, a common name and the PCI vendor/device IDs. This table is searched in order: place specific entries followed by 'catch-all' general entries. */ struct pcidev_entry { const char *proc_pci_name; const char *part_name; int vendor, device, device_mask; int flags; int io_size; int (*diag_func)(int vendor_id, int device_id, long ioaddr, int part_idx); } pcidev_tbl[] = { { "Adaptec Unknown device", "Adaptec Starfire 6915", 0x9004, 0x6915, 0xffff, 0, 256, starfire_diag}, { 0, 0, 0, 0}, }; int verbose = 1, opt_f = 0, debug = 0; int show_regs = 0, show_eeprom = 0, show_mii = 0; unsigned int opt_a = 0, /* Show-all-interfaces flag. */ opt_restart = 0, opt_reset = 0, opt_watch = 0, opt_G = 0; unsigned int opt_GPIO = 0; /* General purpose I/O setting. */ int do_write_eeprom = 0, do_test = 0; int nway_advertise = 0, fixed_speed = -1; int new_default_media = -1; /* Valid with libflash only. */ static unsigned int opt_flash_show = 0; static char *opt_flash_dumpfile = NULL, *opt_flash_loadfile = NULL; static unsigned char new_hwaddr[6], set_hwaddr = 0; static int emergency_rewrite = 0; static int scan_proc_pci(int card_num); static int parse_media_type(const char *capabilities); static int get_media_index(const char *name); int main(int argc, char **argv) { int port_base = 0, chip_type = 0; int errflag = 0, show_version = 0; int c, longind; int card_num = 0; extern char *optarg; while ((c = getopt_long(argc, argv, "#:aA:DeEfF:G:hH:mp:qrRst:vVwWBL:S:", longopts, &longind)) != -1) switch (c) { case '#': card_num = atoi(optarg); break; case 'a': show_regs++; opt_a++; break; case 'A': nway_advertise = parse_media_type(optarg); break; case 'D': debug++; break; case 'e': show_eeprom++; break; case 'E': emergency_rewrite++; break; case 'f': opt_f++; break; case 'F': new_default_media = get_media_index(optarg); if (new_default_media < 0) errflag++; break; case 'G': opt_G++; opt_GPIO = strtoul(optarg, NULL, 16); break; case 'h': fprintf(stderr, long_usage_msg, argv[0]); return 0; case 'H': { int hwaddr[6], i; if (sscanf(optarg, "%2x:%2x:%2x:%2x:%2x:%2x", hwaddr, hwaddr + 1, hwaddr + 2, hwaddr + 3, hwaddr + 4, hwaddr + 5) == 6) { for (i = 0; i < 6; i++) new_hwaddr[i] = hwaddr[i]; set_hwaddr++; } else errflag++; break; } case 'm': show_mii++; break; case 'p': port_base = strtoul(optarg, NULL, 16); break; case 'q': if (verbose) verbose--; break; case 'r': opt_restart++; break; case 'R': opt_reset++; break; case 't': chip_type = atoi(optarg); break; case 'v': verbose++; break; case 'V': show_version++; break; case 'w': do_write_eeprom++; break; case 'W': opt_watch++; break; case 'B': opt_flash_show++; break; case 'L': opt_flash_loadfile = optarg; break; case 'S': opt_flash_dumpfile = optarg; break; case '?': errflag++; } if (errflag) { fprintf(stderr, usage_msg); return 3; } if (verbose || show_version) printf(version_msg); if (chip_type < 0 || chip_type >= sizeof(pcidev_tbl)/sizeof(pcidev_tbl[0]) - 1) { int i; fprintf(stderr, "Valid numeric chip types are:\n"); for (i = 0; pcidev_tbl[i].part_name; i++) { fprintf(stderr, " %d\t%s\n", i, pcidev_tbl[i].part_name); } return 3; } /* Get access to all of I/O space. */ if (iopl(3) < 0) { perror("Network adapter diagnostic: iopl()"); fprintf(stderr, "This program must be run as root.\n"); return 2; } /* Try to read a likely port_base value from /proc/pci. */ if (port_base) { printf("Assuming a %s adapter at %#x.\n", pcidev_tbl[chip_type].part_name, port_base); pcidev_tbl[chip_type].diag_func(0, 0, port_base, chip_type); } else if ( scan_proc_pci(card_num) == 0) { fprintf(stderr, "Unable to find a recognized card in /proc/pci.\nIf there is" " a card in the machine, explicitly set the I/O port" " address\n using '-p -t '\n" " Use '-t -1' to see the valid chip types.\n"); return ENODEV; } if (show_regs == 0 && show_eeprom == 0 && show_mii == 0) printf(" Use '-a' or '-aa' to show device registers,\n" " '-e' to show EEPROM contents, -ee for parsed contents,\n" " or '-m' or '-mm' to show MII management registers.\n"); return 0; } /* Generic (all PCI diags) code to find cards. */ static char bogus_iobase[] = "This chip has not been assigned a valid I/O address, and will not function.\n" " If you have warm-booted from another operating system, a complete \n" " shut-down and power cycle may restore the card to normal operation.\n"; static char bogus_irq[] = "This chip has not been assigned a valid IRQ, and will not function.\n" " This must be fixed in the PCI BIOS setup. The device driver has no way\n" " of changing the PCI IRQ settings.\n" " See http://www.scyld.com/expert/irq-conflict.html for more information.\n"; static int scan_proc_bus_pci(int card_num) { int card_cnt = 0, chip_idx = 0; int port_base; char buffer[514]; unsigned int pci_bus, pci_devid, irq, pciaddr0, pciaddr1; int i; FILE *fp = fopen("/proc/bus/pci/devices", "r"); if (fp == NULL) { if (debug) fprintf(stderr, "Failed to open /proc/bus/pci/devices.\n"); return -1; } while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parsing line -- %s", buffer); if (sscanf(buffer, "%x %x %x %x %x", &pci_bus, &pci_devid, &irq, &pciaddr0, &pciaddr1) <= 0) break; for (i = 0; pcidev_tbl[i].vendor; i++) { if ((pci_devid >> 16) != pcidev_tbl[i].vendor || (pci_devid & pcidev_tbl[i].device_mask) != pcidev_tbl[i].device) continue; chip_idx = i; card_cnt++; /* Select the I/O address. */ port_base = pciaddr0 & 1 ? pciaddr0 & ~1 : pciaddr1 & ~1; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (irq == 0 || irq == 255) printf(bogus_irq); if (port_base) pcidev_tbl[chip_idx].diag_func(0,0,port_base, i); else printf(bogus_iobase); break; } } } fclose(fp); return card_cnt; } static int scan_proc_pci(int card_num) { int card_cnt = 0, chip_idx = 0; char chip_name[40]; FILE *fp; int port_base; if ((card_cnt = scan_proc_bus_pci(card_num)) >= 0) return card_cnt; card_cnt = 0; fp = fopen("/proc/pci", "r"); if (fp == NULL) return 0; { char buffer[514]; int pci_bus, pci_device, pci_function, vendor_id, device_id; int state = 0; if (debug) printf("Done open of /proc/pci.\n"); while (fgets(buffer, sizeof(buffer), fp)) { if (debug > 1) fprintf(stderr, " Parse state %d line -- %s", state, buffer); if (sscanf(buffer, " Bus %d, device %d, function %d", &pci_bus, &pci_device, &pci_function) > 0) { chip_idx = 0; state = 1; continue; } if (state == 1) { if (sscanf(buffer, " Ethernet controller: %39[^\n]", chip_name) > 0) { int i; if (debug) printf("Named ethernet controller %s.\n", chip_name); for (i = 0; pcidev_tbl[i].part_name; i++) if (pcidev_tbl[i].proc_pci_name && strncmp(pcidev_tbl[i].proc_pci_name, chip_name, strlen(pcidev_tbl[i].proc_pci_name)) == 0) { state = 2; chip_idx = i; continue; } continue; } /* Handle a /proc/pci that does not recognize the card. */ if (sscanf(buffer, " Vendor id=%x. Device id=%x", &vendor_id, &device_id) > 0) { int i; if (debug) printf("Found vendor 0x%4.4x device ID 0x%4.4x.\n", vendor_id, device_id); for (i = 0; pcidev_tbl[i].vendor; i++) if (vendor_id == pcidev_tbl[i].vendor && (device_id & pcidev_tbl[i].device_mask) == pcidev_tbl[i].device) break; if (pcidev_tbl[i].vendor == 0) continue; chip_idx = i; state = 2; } } if (state == 2) { if (sscanf(buffer, " I/O at %x", &port_base) > 0) { card_cnt++; state = 3; if (card_num == 0 || card_num == card_cnt) { printf("Index #%d: Found a %s adapter at %#x.\n", card_cnt, pcidev_tbl[chip_idx].part_name, port_base); if (port_base) pcidev_tbl[chip_idx].diag_func (vendor_id, device_id, port_base, chip_idx); else printf(bogus_iobase); } } } } } fclose(fp); return card_cnt; } /* Convert a text media name to a NWay capability word. */ static int parse_media_type(const char *capabilities) { const char *mtypes[] = { "100baseT4", "100baseTx", "100baseTx-FD", "100baseTx-HD", "10baseT", "10baseT-FD", "10baseT-HD", 0, }; char *endptr; int cap_map[] = { 0x0200, 0x0180, 0x0100, 0x0080, 0x0060, 0x0040, 0x0020,}; int i; if (debug) fprintf(stderr, "Advertise string is '%s'.\n", capabilities); for (i = 0; mtypes[i]; i++) if (strcasecmp(mtypes[i], capabilities) == 0) return cap_map[i]; i = strtoul(capabilities, &endptr, 16); if (*endptr == 0 && 0 < i && i <= 0xffff) return i; fprintf(stderr, "Invalid media advertisement '%s'.\n", capabilities); return 0; } /* Return the index of a valid media name. 0x0800 Power up autosense (check speed only once) 0x8000 Dynamic Autosense */ /* A table of media names to indices. This matches the Digital Tulip SROM numbering, primarily because that is the most complete list. Other chips will have to map these number to their internal values. */ struct { char *name; int value; } mediamap[] = { { "10baseT", 0 }, { "10base2", 1 }, { "AUI", 2 }, { "100baseTx", 3 }, { "10baseT-FDX", 0x204 }, { "100baseTx-FDX", 0x205 }, { "100baseT4", 6 }, { "100baseFx", 7 }, { "100baseFx-FDX", 8 }, { "MII", 11 }, { "Autosense", 0x0800 }, { 0, 0 }, }; static int get_media_index(const char *name) { char *endptr; int i; if (! name) return -1; for (i = 0; mediamap[i].name; i++) if (strcasecmp(name, mediamap[i].name) == 0) return i; i = strtol(name, &endptr, 0); if (*endptr == 0) return i; fprintf(stderr, "Invalid interface specified. It must be one of\n"); for (i = 0; mediamap[i].name; i++) fprintf(stderr, " %d %s\n", mediamap[i].value, mediamap[i].name); return -1; } /* Chip-specific section. */ /* The chip-specific section for the Adaptec Starfire diagnostic. */ static int read_eeprom(long ioaddr, int location); int mdio_read(long ioaddr, int phy_id, int location); void mdio_write(long ioaddr, int phy_id, int location, int value); /* Offsets to the various registers. All accesses need not be longword aligned. */ enum starfire_offsets { GenCtrl=0x50070, IntrClear=0x50084, IntrStatus=0x50084, IntrEnable=0x50088, MIICtrl=0x52000, StationAddr=0x50120, EEPROMCtrl=0x51000, TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */ TxRingAddrHi=0x5009C, /* 64 bit address extension. */ TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4, TxThreshold=0x500B0, TxMode=0x55000, }; /* Non-interrupting events. */ const char *event_names[16] = { "Tx Abort", "Rx frame complete", "Transmit done", }; struct config_name { int val, mask; const char*name;} static rcvr_mode[] = { {0x44, 0xff, "Normal unicast and perfect multicast filtering"}, {0x34, 0xff, "Normal unicast and hashed multicast"}, {0x03, 0x02, "Normal unicast and all multicast"}, {0x01, 0x01, "Promiscuous"}, {0x00, 0x00, "Unknown/invalid"}, }; /* Values read from the EEPROM, and the new image. */ #define EEPROM_SIZE 32 unsigned int eeprom_contents[EEPROM_SIZE]; unsigned int new_ee_contents[EEPROM_SIZE]; int starfire_diag(int vendor_id, int device_id, long ioaddr, int part_idx) { int i; if (verbose || show_regs) { int MAC_config, MAC_addr; int rx_mode = inl(ioaddr + 0xf4); int pci_stats = inl(ioaddr + 0x48); if (opt_a) { printf("%s chip registers at %#lx", pcidev_tbl[part_idx].part_name, ioaddr); for (i = 0; i < pcidev_tbl[part_idx].io_size; i += 4) { if ((i & 0x1f) == 0) printf("\n 0x%3.3X:", i); if (!opt_f && i == 0x80) printf(" **INTR**"); else printf(" %8.8x", inl(ioaddr + i)); } printf("\n"); } printf(" Queue states\n" " Tx producer index %d, consumer index %d.\n" " Rx consumer index %d, producer index %d.\n", inw(ioaddr + 0xa0), inw(ioaddr + 0xa4), inw(ioaddr + 0xea), inw(ioaddr + 0xe8)); printf(" PCI statistics\n"); printf(" PCI Bus maximum latency was %d nsec, peak interrupt latency " "%d usec.\n", (pci_stats>>24)*480, (pci_stats & 0xff) *30); printf(" PCI accesses: %d slave cycles, %d master bursts.\n", inl(ioaddr + 0x48) & 0xffff, inl(ioaddr + 0x4C) & 0xffff); printf(" Interrupts pending: %8.8x\n", inl(ioaddr + 0x84)); for (i = 0; rcvr_mode[i].mask; i++) if ((rx_mode & rcvr_mode[i].mask) == rcvr_mode[i].val) break; printf(" Receive mode is 0x%8.8x: %s.\n", rx_mode, rcvr_mode[i].name); outl(0x50120, ioaddr + 0x68); MAC_addr = inl(ioaddr + 0x6c); printf(" MAC address is --:--:%2.2x:%2.2x:%2.2x:%2.2x.\n", (MAC_addr >> 24) & 0xff, (MAC_addr >> 16) & 0xff, (MAC_addr >> 8) & 0xff, (MAC_addr >> 0) & 0xff); outl(0x55000, ioaddr + 0x68); MAC_config = inl(ioaddr + 0x6c); printf(" MAC Config 1 is %8.8x: %s-duplex.\n", MAC_config, MAC_config & 0x02 ? "full" : "half"); if (opt_a > 2) { printf(" Statistics registers: "); for (i = 0; i < 0x100; i+=4) { outl(0x57000+i, ioaddr + 0x68); printf(" %8.8x%s", inl(ioaddr + 0x6c), i%16 == 15 ? "\n " : ""); } printf("\n"); } } for (i = 0; i < EEPROM_SIZE; i++) eeprom_contents[i] = read_eeprom(ioaddr, i); if (opt_GPIO) { printf("GPIO existing state is %8.8x\n", inl(ioaddr + 0x8C)); outl(opt_GPIO, ioaddr + 0x8C); printf(" Updating GPIO register to %8.8x (%8.8x).\n", opt_GPIO, inl(ioaddr + 0x8C)); } if (show_eeprom) { u32 sum = 0; u8 *ee = (u8*)eeprom_contents; if (show_eeprom > 1) { printf("EEPROM contents:"); for (i = 0; i < EEPROM_SIZE; i++) { if ((i & 7) == 0) printf("\n0x%3.3x: ", i); printf(" %8.8x", eeprom_contents[i]); } printf("\n"); } printf("EEPROM Subsystem IDs, Vendor %2.2x%2.2x Device %2.2x%2.2x.\n", ee[7], ee[6], ee[9], ee[8]); printf("EEPROM Station address is "); for (i = 20; i > 15; i--) printf("%2.2x:", ee[i]); printf("%2.2x.\n", ee[i]); for (i = 0; i < EEPROM_SIZE-1; i++) sum ^= eeprom_contents[i]; printf("EEPROM Checksum is %8.8x.\n", sum); for (i = 0, sum=0; i < EEPROM_SIZE*4 - 2; i++) sum += ee[i]; printf("EEPROM Checksum is %8.8x.\n", sum); } if (show_mii) { int phys[4], phy, phy_idx = 0; for (phy = 0; phy < 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(ioaddr, phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { phys[phy_idx++] = phy; printf(" MII PHY found at address %d, status 0x%4.4x.\n", phy, mii_status); } } if (phy_idx == 0) printf(" ***WARNING***: No MII transceivers found!\n"); for (phy = 0; phy < phy_idx; phy++) { int mii_reg; printf(" MII PHY #%d transceiver registers:", phys[phy]); for (mii_reg = 0; mii_reg < 32; mii_reg++) printf("%s %4.4x", (mii_reg % 8) == 0 ? "\n " : "", mdio_read(ioaddr, phys[phy], mii_reg)); printf(".\n"); } #ifdef LIBMII show_mii_details(ioaddr, phys[0]); if (show_mii > 1) monitor_mii(ioaddr, phys[0]); #endif } return 0; } static int read_eeprom(long ioaddr, int location) { outl(EEPROMCtrl + location*4, ioaddr + 0x68); return inl(ioaddr + 0x6C); } #ifdef notused static void write_eeprom(long ioaddr, int location, int value) { outl(EEPROMCtrl + location*4, ioaddr + 0x68); outl(value, ioaddr + 0x6C); return; } #endif /* MII Managemen Data I/O accesses. These routines assume the MDIO controller is idle, and do not exit until the command is finished. */ int mdio_read(long ioaddr, int phy_id, int location) { int result, boguscnt=1000; outl(MIICtrl + (phy_id<<7) + location*4, ioaddr + 0x68); do result = inl(ioaddr + 0x6C); while ((result & 0xC0000000) != 0x80000000 && --boguscnt >= 0); return result & 0xffff; } void mdio_write(long ioaddr, int phy_id, int location, int value) { outl(MIICtrl + (phy_id<<7) + location*4, ioaddr + 0x68); outl(value, ioaddr + 0x6C); return; } /* * Local variables: * compile-command: "cc -O -Wall -o starfire-diag starfire-diag.c" * tab-width: 4 * c-indent-level: 4 * c-basic-offset: 4 * End: */