/* SPDX-License-Identifier: LGPL-2.1-only */ /* * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/ * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** * @ingroup xfrmnl * @defgroup sa Security Association * @brief */ #include #include #include #include #include #include #include #include #include "netlink-private/utils.h" /** @cond SKIP */ #define XFRM_SA_ATTR_SEL 0x01 #define XFRM_SA_ATTR_DADDR 0x02 #define XFRM_SA_ATTR_SPI 0x04 #define XFRM_SA_ATTR_PROTO 0x08 #define XFRM_SA_ATTR_SADDR 0x10 #define XFRM_SA_ATTR_LTIME_CFG 0x20 #define XFRM_SA_ATTR_LTIME_CUR 0x40 #define XFRM_SA_ATTR_STATS 0x80 #define XFRM_SA_ATTR_SEQ 0x100 #define XFRM_SA_ATTR_REQID 0x200 #define XFRM_SA_ATTR_FAMILY 0x400 #define XFRM_SA_ATTR_MODE 0x800 #define XFRM_SA_ATTR_REPLAY_WIN 0x1000 #define XFRM_SA_ATTR_FLAGS 0x2000 #define XFRM_SA_ATTR_ALG_AEAD 0x4000 #define XFRM_SA_ATTR_ALG_AUTH 0x8000 #define XFRM_SA_ATTR_ALG_CRYPT 0x10000 #define XFRM_SA_ATTR_ALG_COMP 0x20000 #define XFRM_SA_ATTR_ENCAP 0x40000 #define XFRM_SA_ATTR_TFCPAD 0x80000 #define XFRM_SA_ATTR_COADDR 0x100000 #define XFRM_SA_ATTR_MARK 0x200000 #define XFRM_SA_ATTR_SECCTX 0x400000 #define XFRM_SA_ATTR_REPLAY_MAXAGE 0x800000 #define XFRM_SA_ATTR_REPLAY_MAXDIFF 0x1000000 #define XFRM_SA_ATTR_REPLAY_STATE 0x2000000 #define XFRM_SA_ATTR_EXPIRE 0x4000000 #define XFRM_SA_ATTR_OFFLOAD_DEV 0x8000000 static struct nl_cache_ops xfrmnl_sa_ops; static struct nl_object_ops xfrm_sa_obj_ops; /** @endcond */ static void xfrm_sa_alloc_data(struct nl_object *c) { struct xfrmnl_sa* sa = nl_object_priv (c); if ((sa->sel = xfrmnl_sel_alloc ()) == NULL) return; if ((sa->lft = xfrmnl_ltime_cfg_alloc ()) == NULL) return; } static void xfrm_sa_free_data(struct nl_object *c) { struct xfrmnl_sa* sa = nl_object_priv (c); if (sa == NULL) return; xfrmnl_sel_put (sa->sel); xfrmnl_ltime_cfg_put (sa->lft); nl_addr_put (sa->id.daddr); nl_addr_put (sa->saddr); if (sa->aead) free (sa->aead); if (sa->auth) free (sa->auth); if (sa->crypt) free (sa->crypt); if (sa->comp) free (sa->comp); if (sa->encap) { if (sa->encap->encap_oa) nl_addr_put(sa->encap->encap_oa); free(sa->encap); } if (sa->coaddr) nl_addr_put (sa->coaddr); if (sa->sec_ctx) free (sa->sec_ctx); if (sa->replay_state_esn) free (sa->replay_state_esn); if (sa->user_offload) free(sa->user_offload); } static int xfrm_sa_clone(struct nl_object *_dst, struct nl_object *_src) { struct xfrmnl_sa* dst = nl_object_priv(_dst); struct xfrmnl_sa* src = nl_object_priv(_src); uint32_t len = 0; dst->sel = NULL; dst->id.daddr = NULL; dst->saddr = NULL; dst->lft = NULL; dst->aead = NULL; dst->auth = NULL; dst->crypt = NULL; dst->comp = NULL; dst->encap = NULL; dst->coaddr = NULL; dst->sec_ctx = NULL; dst->replay_state_esn = NULL; dst->user_offload = NULL; if (src->sel) if ((dst->sel = xfrmnl_sel_clone (src->sel)) == NULL) return -NLE_NOMEM; if (src->lft) if ((dst->lft = xfrmnl_ltime_cfg_clone (src->lft)) == NULL) return -NLE_NOMEM; if (src->id.daddr) if ((dst->id.daddr = nl_addr_clone (src->id.daddr)) == NULL) return -NLE_NOMEM; if (src->saddr) if ((dst->saddr = nl_addr_clone (src->saddr)) == NULL) return -NLE_NOMEM; if (src->aead) { len = sizeof (struct xfrmnl_algo_aead) + ((src->aead->alg_key_len + 7) / 8); if ((dst->aead = calloc (1, len)) == NULL) return -NLE_NOMEM; memcpy ((void *)dst->aead, (void *)src->aead, len); } if (src->auth) { len = sizeof (struct xfrmnl_algo_auth) + ((src->auth->alg_key_len + 7) / 8); if ((dst->auth = calloc (1, len)) == NULL) return -NLE_NOMEM; memcpy ((void *)dst->auth, (void *)src->auth, len); } if (src->crypt) { len = sizeof (struct xfrmnl_algo) + ((src->crypt->alg_key_len + 7) / 8); if ((dst->crypt = calloc (1, len)) == NULL) return -NLE_NOMEM; memcpy ((void *)dst->crypt, (void *)src->crypt, len); } if (src->comp) { len = sizeof (struct xfrmnl_algo) + ((src->comp->alg_key_len + 7) / 8); if ((dst->comp = calloc (1, len)) == NULL) return -NLE_NOMEM; memcpy ((void *)dst->comp, (void *)src->comp, len); } if (src->encap) { len = sizeof (struct xfrmnl_encap_tmpl); if ((dst->encap = calloc (1, len)) == NULL) return -NLE_NOMEM; memcpy ((void *)dst->encap, (void *)src->encap, len); } if (src->coaddr) if ((dst->coaddr = nl_addr_clone (src->coaddr)) == NULL) return -NLE_NOMEM; if (src->sec_ctx) { len = sizeof (*src->sec_ctx) + src->sec_ctx->ctx_len; if ((dst->sec_ctx = calloc (1, len)) == NULL) return -NLE_NOMEM; memcpy ((void *)dst->sec_ctx, (void *)src->sec_ctx, len); } if (src->replay_state_esn) { len = sizeof (struct xfrmnl_replay_state_esn) + (src->replay_state_esn->bmp_len * sizeof (uint32_t)); if ((dst->replay_state_esn = calloc (1, len)) == NULL) return -NLE_NOMEM; memcpy ((void *)dst->replay_state_esn, (void *)src->replay_state_esn, len); } if (src->user_offload) { dst->user_offload = _nl_memdup_ptr(src->user_offload); if (!dst->user_offload) return -NLE_NOMEM; } return 0; } static uint64_t xfrm_sa_compare(struct nl_object *_a, struct nl_object *_b, uint64_t attrs, int flags) { struct xfrmnl_sa* a = (struct xfrmnl_sa *) _a; struct xfrmnl_sa* b = (struct xfrmnl_sa *) _b; uint64_t diff = 0; int found = 0; #define XFRM_SA_DIFF(ATTR, EXPR) ATTR_DIFF(attrs, XFRM_SA_ATTR_##ATTR, a, b, EXPR) diff |= XFRM_SA_DIFF(SEL, xfrmnl_sel_cmp(a->sel, b->sel)); diff |= XFRM_SA_DIFF(DADDR, nl_addr_cmp(a->id.daddr, b->id.daddr)); diff |= XFRM_SA_DIFF(SPI, a->id.spi != b->id.spi); diff |= XFRM_SA_DIFF(PROTO, a->id.proto != b->id.proto); diff |= XFRM_SA_DIFF(SADDR, nl_addr_cmp(a->saddr, b->saddr)); diff |= XFRM_SA_DIFF(LTIME_CFG, xfrmnl_ltime_cfg_cmp(a->lft, b->lft)); diff |= XFRM_SA_DIFF(REQID, a->reqid != b->reqid); diff |= XFRM_SA_DIFF(FAMILY,a->family != b->family); diff |= XFRM_SA_DIFF(MODE,a->mode != b->mode); diff |= XFRM_SA_DIFF(REPLAY_WIN,a->replay_window != b->replay_window); diff |= XFRM_SA_DIFF(FLAGS,a->flags != b->flags); diff |= XFRM_SA_DIFF(ALG_AEAD,(strcmp(a->aead->alg_name, b->aead->alg_name) || (a->aead->alg_key_len != b->aead->alg_key_len) || (a->aead->alg_icv_len != b->aead->alg_icv_len) || memcmp(a->aead->alg_key, b->aead->alg_key, ((a->aead->alg_key_len + 7)/8)))); diff |= XFRM_SA_DIFF(ALG_AUTH,(strcmp(a->auth->alg_name, b->auth->alg_name) || (a->auth->alg_key_len != b->auth->alg_key_len) || (a->auth->alg_trunc_len != b->auth->alg_trunc_len) || memcmp(a->auth->alg_key, b->auth->alg_key, ((a->auth->alg_key_len + 7)/8)))); diff |= XFRM_SA_DIFF(ALG_CRYPT,(strcmp(a->crypt->alg_name, b->crypt->alg_name) || (a->crypt->alg_key_len != b->crypt->alg_key_len) || memcmp(a->crypt->alg_key, b->crypt->alg_key, ((a->crypt->alg_key_len + 7)/8)))); diff |= XFRM_SA_DIFF(ALG_COMP,(strcmp(a->comp->alg_name, b->comp->alg_name) || (a->comp->alg_key_len != b->comp->alg_key_len) || memcmp(a->comp->alg_key, b->comp->alg_key, ((a->comp->alg_key_len + 7)/8)))); diff |= XFRM_SA_DIFF(ENCAP,((a->encap->encap_type != b->encap->encap_type) || (a->encap->encap_sport != b->encap->encap_sport) || (a->encap->encap_dport != b->encap->encap_dport) || nl_addr_cmp(a->encap->encap_oa, b->encap->encap_oa))); diff |= XFRM_SA_DIFF(TFCPAD,a->tfcpad != b->tfcpad); diff |= XFRM_SA_DIFF(COADDR,nl_addr_cmp(a->coaddr, b->coaddr)); diff |= XFRM_SA_DIFF(MARK,(a->mark.m != b->mark.m) || (a->mark.v != b->mark.v)); diff |= XFRM_SA_DIFF(SECCTX,((a->sec_ctx->ctx_doi != b->sec_ctx->ctx_doi) || (a->sec_ctx->ctx_alg != b->sec_ctx->ctx_alg) || (a->sec_ctx->ctx_len != b->sec_ctx->ctx_len) || strcmp(a->sec_ctx->ctx, b->sec_ctx->ctx))); diff |= XFRM_SA_DIFF(REPLAY_MAXAGE,a->replay_maxage != b->replay_maxage); diff |= XFRM_SA_DIFF(REPLAY_MAXDIFF,a->replay_maxdiff != b->replay_maxdiff); diff |= XFRM_SA_DIFF(EXPIRE,a->hard != b->hard); /* Compare replay states */ found = AVAILABLE_MISMATCH (a, b, XFRM_SA_ATTR_REPLAY_STATE); if (found == 0) // attribute exists in both objects { if (((a->replay_state_esn != NULL) && (b->replay_state_esn == NULL)) || ((a->replay_state_esn == NULL) && (b->replay_state_esn != NULL))) found |= 1; if (found == 0) // same replay type. compare actual values { if (a->replay_state_esn) { if (a->replay_state_esn->bmp_len != b->replay_state_esn->bmp_len) diff |= 1; else { uint32_t len = sizeof (struct xfrmnl_replay_state_esn) + (a->replay_state_esn->bmp_len * sizeof (uint32_t)); diff |= memcmp (a->replay_state_esn, b->replay_state_esn, len); } } else { if ((a->replay_state.oseq != b->replay_state.oseq) || (a->replay_state.seq != b->replay_state.seq) || (a->replay_state.bitmap != b->replay_state.bitmap)) diff |= 1; } } } #undef XFRM_SA_DIFF return diff; } /** * @name XFRM SA Attribute Translations * @{ */ static const struct trans_tbl sa_attrs[] = { __ADD(XFRM_SA_ATTR_SEL, selector), __ADD(XFRM_SA_ATTR_DADDR, daddr), __ADD(XFRM_SA_ATTR_SPI, spi), __ADD(XFRM_SA_ATTR_PROTO, proto), __ADD(XFRM_SA_ATTR_SADDR, saddr), __ADD(XFRM_SA_ATTR_LTIME_CFG, lifetime_cfg), __ADD(XFRM_SA_ATTR_LTIME_CUR, lifetime_cur), __ADD(XFRM_SA_ATTR_STATS, stats), __ADD(XFRM_SA_ATTR_SEQ, seqnum), __ADD(XFRM_SA_ATTR_REQID, reqid), __ADD(XFRM_SA_ATTR_FAMILY, family), __ADD(XFRM_SA_ATTR_MODE, mode), __ADD(XFRM_SA_ATTR_REPLAY_WIN, replay_window), __ADD(XFRM_SA_ATTR_FLAGS, flags), __ADD(XFRM_SA_ATTR_ALG_AEAD, alg_aead), __ADD(XFRM_SA_ATTR_ALG_AUTH, alg_auth), __ADD(XFRM_SA_ATTR_ALG_CRYPT, alg_crypto), __ADD(XFRM_SA_ATTR_ALG_COMP, alg_comp), __ADD(XFRM_SA_ATTR_ENCAP, encap), __ADD(XFRM_SA_ATTR_TFCPAD, tfcpad), __ADD(XFRM_SA_ATTR_COADDR, coaddr), __ADD(XFRM_SA_ATTR_MARK, mark), __ADD(XFRM_SA_ATTR_SECCTX, sec_ctx), __ADD(XFRM_SA_ATTR_REPLAY_MAXAGE, replay_maxage), __ADD(XFRM_SA_ATTR_REPLAY_MAXDIFF, replay_maxdiff), __ADD(XFRM_SA_ATTR_REPLAY_STATE, replay_state), __ADD(XFRM_SA_ATTR_EXPIRE, expire), __ADD(XFRM_SA_ATTR_OFFLOAD_DEV, user_offload), }; static char* xfrm_sa_attrs2str(int attrs, char *buf, size_t len) { return __flags2str (attrs, buf, len, sa_attrs, ARRAY_SIZE(sa_attrs)); } /** @} */ /** * @name XFRM SA Flags Translations * @{ */ static const struct trans_tbl sa_flags[] = { __ADD(XFRM_STATE_NOECN, no ecn), __ADD(XFRM_STATE_DECAP_DSCP, decap dscp), __ADD(XFRM_STATE_NOPMTUDISC, no pmtu discovery), __ADD(XFRM_STATE_WILDRECV, wild receive), __ADD(XFRM_STATE_ICMP, icmp), __ADD(XFRM_STATE_AF_UNSPEC, unspecified), __ADD(XFRM_STATE_ALIGN4, align4), __ADD(XFRM_STATE_ESN, esn), }; char* xfrmnl_sa_flags2str(int flags, char *buf, size_t len) { return __flags2str (flags, buf, len, sa_flags, ARRAY_SIZE(sa_flags)); } int xfrmnl_sa_str2flag(const char *name) { return __str2flags (name, sa_flags, ARRAY_SIZE(sa_flags)); } /** @} */ /** * @name XFRM SA Mode Translations * @{ */ static const struct trans_tbl sa_modes[] = { __ADD(XFRM_MODE_TRANSPORT, transport), __ADD(XFRM_MODE_TUNNEL, tunnel), __ADD(XFRM_MODE_ROUTEOPTIMIZATION, route optimization), __ADD(XFRM_MODE_IN_TRIGGER, in trigger), __ADD(XFRM_MODE_BEET, beet), }; char* xfrmnl_sa_mode2str(int mode, char *buf, size_t len) { return __type2str (mode, buf, len, sa_modes, ARRAY_SIZE(sa_modes)); } int xfrmnl_sa_str2mode(const char *name) { return __str2type (name, sa_modes, ARRAY_SIZE(sa_modes)); } /** @} */ static void xfrm_sa_dump_line(struct nl_object *a, struct nl_dump_params *p) { char dst[INET6_ADDRSTRLEN+5], src[INET6_ADDRSTRLEN+5]; struct xfrmnl_sa* sa = (struct xfrmnl_sa *) a; char flags[128], mode[128]; time_t add_time, use_time; struct tm *add_time_tm, *use_time_tm; nl_dump_line(p, "src %s dst %s family: %s\n", nl_addr2str(sa->saddr, src, sizeof(src)), nl_addr2str(sa->id.daddr, dst, sizeof(dst)), nl_af2str (sa->family, flags, sizeof (flags))); nl_dump_line(p, "\tproto %s spi 0x%x reqid %u\n", nl_ip_proto2str (sa->id.proto, flags, sizeof(flags)), sa->id.spi, sa->reqid); xfrmnl_sa_flags2str(sa->flags, flags, sizeof (flags)); xfrmnl_sa_mode2str(sa->mode, mode, sizeof (mode)); nl_dump_line(p, "\tmode: %s flags: %s (0x%x) seq: %u replay window: %u\n", mode, flags, sa->flags, sa->seq, sa->replay_window); nl_dump_line(p, "\tlifetime configuration: \n"); if (sa->lft->soft_byte_limit == XFRM_INF) sprintf (flags, "INF"); else sprintf (flags, "%" PRIu64, sa->lft->soft_byte_limit); if (sa->lft->soft_packet_limit == XFRM_INF) sprintf (mode, "INF"); else sprintf (mode, "%" PRIu64, sa->lft->soft_packet_limit); nl_dump_line(p, "\t\tsoft limit: %s (bytes), %s (packets)\n", flags, mode); if (sa->lft->hard_byte_limit == XFRM_INF) sprintf (flags, "INF"); else sprintf (flags, "%" PRIu64, sa->lft->hard_byte_limit); if (sa->lft->hard_packet_limit == XFRM_INF) sprintf (mode, "INF"); else sprintf (mode, "%" PRIu64, sa->lft->hard_packet_limit); nl_dump_line(p, "\t\thard limit: %s (bytes), %s (packets)\n", flags, mode); nl_dump_line( p, "\t\tsoft add_time: %llu (seconds), soft use_time: %llu (seconds) \n", (long long unsigned)sa->lft->soft_add_expires_seconds, (long long unsigned)sa->lft->soft_use_expires_seconds); nl_dump_line( p, "\t\thard add_time: %llu (seconds), hard use_time: %llu (seconds) \n", (long long unsigned)sa->lft->hard_add_expires_seconds, (long long unsigned)sa->lft->hard_use_expires_seconds); nl_dump_line(p, "\tlifetime current: \n"); nl_dump_line(p, "\t\t%llu bytes, %llu packets\n", (long long unsigned)sa->curlft.bytes, (long long unsigned)sa->curlft.packets); if (sa->curlft.add_time != 0) { add_time = sa->curlft.add_time; add_time_tm = gmtime (&add_time); strftime (flags, 128, "%Y-%m-%d %H-%M-%S", add_time_tm); } else { sprintf (flags, "%s", "-"); } if (sa->curlft.use_time != 0) { use_time = sa->curlft.use_time; use_time_tm = gmtime (&use_time); strftime (mode, 128, "%Y-%m-%d %H-%M-%S", use_time_tm); } else { sprintf (mode, "%s", "-"); } nl_dump_line(p, "\t\tadd_time: %s, use_time: %s\n", flags, mode); if (sa->aead) { nl_dump_line(p, "\tAEAD Algo: \n"); nl_dump_line(p, "\t\tName: %s Key len(bits): %u ICV Len(bits): %u\n", sa->aead->alg_name, sa->aead->alg_key_len, sa->aead->alg_icv_len); } if (sa->auth) { nl_dump_line(p, "\tAuth Algo: \n"); nl_dump_line(p, "\t\tName: %s Key len(bits): %u Trunc len(bits): %u\n", sa->auth->alg_name, sa->auth->alg_key_len, sa->auth->alg_trunc_len); } if (sa->crypt) { nl_dump_line(p, "\tEncryption Algo: \n"); nl_dump_line(p, "\t\tName: %s Key len(bits): %u\n", sa->crypt->alg_name, sa->crypt->alg_key_len); } if (sa->comp) { nl_dump_line(p, "\tCompression Algo: \n"); nl_dump_line(p, "\t\tName: %s Key len(bits): %u\n", sa->comp->alg_name, sa->comp->alg_key_len); } if (sa->encap) { nl_dump_line(p, "\tEncapsulation template: \n"); nl_dump_line(p, "\t\tType: %d Src port: %d Dst port: %d Encap addr: %s\n", sa->encap->encap_type, sa->encap->encap_sport, sa->encap->encap_dport, nl_addr2str (sa->encap->encap_oa, dst, sizeof (dst))); } if (sa->ce_mask & XFRM_SA_ATTR_TFCPAD) nl_dump_line(p, "\tTFC Pad: %u\n", sa->tfcpad); if (sa->ce_mask & XFRM_SA_ATTR_COADDR) nl_dump_line(p, "\tCO Address: %s\n", nl_addr2str (sa->coaddr, dst, sizeof (dst))); if (sa->ce_mask & XFRM_SA_ATTR_MARK) nl_dump_line(p, "\tMark mask: 0x%x Mark value: 0x%x\n", sa->mark.m, sa->mark.v); if (sa->ce_mask & XFRM_SA_ATTR_SECCTX) nl_dump_line(p, "\tDOI: %d Algo: %d Len: %u ctx: %s\n", sa->sec_ctx->ctx_doi, sa->sec_ctx->ctx_alg, sa->sec_ctx->ctx_len, sa->sec_ctx->ctx); nl_dump_line(p, "\treplay info: \n"); nl_dump_line(p, "\t\tmax age %u max diff %u \n", sa->replay_maxage, sa->replay_maxdiff); if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE) { nl_dump_line(p, "\treplay state info: \n"); if (sa->replay_state_esn) { nl_dump_line(p, "\t\toseq %u seq %u oseq_hi %u seq_hi %u replay window: %u \n", sa->replay_state_esn->oseq, sa->replay_state_esn->seq, sa->replay_state_esn->oseq_hi, sa->replay_state_esn->seq_hi, sa->replay_state_esn->replay_window); } else { nl_dump_line(p, "\t\toseq %u seq %u bitmap: %u \n", sa->replay_state.oseq, sa->replay_state.seq, sa->replay_state.bitmap); } } nl_dump_line(p, "\tselector info: \n"); xfrmnl_sel_dump (sa->sel, p); nl_dump_line(p, "\tHard: %d\n", sa->hard); nl_dump(p, "\n"); } static void xfrm_sa_dump_stats(struct nl_object *a, struct nl_dump_params *p) { struct xfrmnl_sa* sa = (struct xfrmnl_sa*)a; nl_dump_line(p, "\tstats: \n"); nl_dump_line(p, "\t\treplay window: %u replay: %u integrity failed: %u \n", sa->stats.replay_window, sa->stats.replay, sa->stats.integrity_failed); return; } static void xfrm_sa_dump_details(struct nl_object *a, struct nl_dump_params *p) { xfrm_sa_dump_line(a, p); xfrm_sa_dump_stats (a, p); } /** * @name XFRM SA Object Allocation/Freeage * @{ */ struct xfrmnl_sa* xfrmnl_sa_alloc(void) { return (struct xfrmnl_sa*) nl_object_alloc(&xfrm_sa_obj_ops); } void xfrmnl_sa_put(struct xfrmnl_sa* sa) { nl_object_put((struct nl_object *) sa); } /** @} */ /** * @name SA Cache Managament * @{ */ /** * Build a SA cache including all SAs currently configured in the kernel. * @arg sock Netlink socket. * @arg result Pointer to store resulting cache. * * Allocates a new SA cache, initializes it properly and updates it * to include all SAs currently configured in the kernel. * * @return 0 on success or a negative error code. */ int xfrmnl_sa_alloc_cache(struct nl_sock *sock, struct nl_cache **result) { return nl_cache_alloc_and_fill(&xfrmnl_sa_ops, sock, result); } /** * Look up a SA by destination address, SPI, protocol * @arg cache SA cache * @arg daddr destination address of the SA * @arg spi SPI * @arg proto protocol * @return sa handle or NULL if no match was found. */ struct xfrmnl_sa* xfrmnl_sa_get(struct nl_cache* cache, struct nl_addr* daddr, unsigned int spi, unsigned int proto) { struct xfrmnl_sa *sa; //nl_list_for_each_entry(sa, &cache->c_items, ce_list) { for (sa = (struct xfrmnl_sa*)nl_cache_get_first (cache); sa != NULL; sa = (struct xfrmnl_sa*)nl_cache_get_next ((struct nl_object*)sa)) { if (sa->id.proto == proto && sa->id.spi == spi && !nl_addr_cmp(sa->id.daddr, daddr)) { nl_object_get((struct nl_object *) sa); return sa; } } return NULL; } /** @} */ static struct nla_policy xfrm_sa_policy[XFRMA_MAX+1] = { [XFRMA_SA] = { .minlen = sizeof(struct xfrm_usersa_info)}, [XFRMA_ALG_AUTH_TRUNC] = { .minlen = sizeof(struct xfrm_algo_auth)}, [XFRMA_ALG_AEAD] = { .minlen = sizeof(struct xfrm_algo_aead) }, [XFRMA_ALG_AUTH] = { .minlen = sizeof(struct xfrm_algo) }, [XFRMA_ALG_CRYPT] = { .minlen = sizeof(struct xfrm_algo) }, [XFRMA_ALG_COMP] = { .minlen = sizeof(struct xfrm_algo) }, [XFRMA_ENCAP] = { .minlen = sizeof(struct xfrm_encap_tmpl) }, [XFRMA_TMPL] = { .minlen = sizeof(struct xfrm_user_tmpl) }, [XFRMA_SEC_CTX] = { .minlen = sizeof(struct xfrm_sec_ctx) }, [XFRMA_LTIME_VAL] = { .minlen = sizeof(struct xfrm_lifetime_cur) }, [XFRMA_REPLAY_VAL] = { .minlen = sizeof(struct xfrm_replay_state) }, [XFRMA_OFFLOAD_DEV] = { .minlen = sizeof(struct xfrm_user_offload) }, [XFRMA_REPLAY_THRESH] = { .type = NLA_U32 }, [XFRMA_ETIMER_THRESH] = { .type = NLA_U32 }, [XFRMA_SRCADDR] = { .minlen = sizeof(xfrm_address_t) }, [XFRMA_COADDR] = { .minlen = sizeof(xfrm_address_t) }, [XFRMA_MARK] = { .minlen = sizeof(struct xfrm_mark) }, [XFRMA_TFCPAD] = { .type = NLA_U32 }, [XFRMA_REPLAY_ESN_VAL] = { .minlen = sizeof(struct xfrm_replay_state_esn) }, }; static int xfrm_sa_request_update(struct nl_cache *c, struct nl_sock *h) { return nl_send_simple (h, XFRM_MSG_GETSA, NLM_F_DUMP, NULL, 0); } int xfrmnl_sa_parse(struct nlmsghdr *n, struct xfrmnl_sa **result) { struct xfrmnl_sa* sa; struct nlattr *tb[XFRMA_MAX + 1]; struct xfrm_usersa_info* sa_info; struct xfrm_user_expire* ue; int len, err; struct nl_addr* addr; sa = xfrmnl_sa_alloc(); if (!sa) { err = -NLE_NOMEM; goto errout; } sa->ce_msgtype = n->nlmsg_type; if (n->nlmsg_type == XFRM_MSG_EXPIRE) { ue = nlmsg_data(n); sa_info = &ue->state; sa->hard = ue->hard; sa->ce_mask |= XFRM_SA_ATTR_EXPIRE; } else if (n->nlmsg_type == XFRM_MSG_DELSA) { sa_info = (struct xfrm_usersa_info*)((char *)nlmsg_data(n) + sizeof (struct xfrm_usersa_id) + NLA_HDRLEN); } else { sa_info = nlmsg_data(n); } err = nlmsg_parse(n, sizeof(struct xfrm_usersa_info), tb, XFRMA_MAX, xfrm_sa_policy); if (err < 0) goto errout; if (sa_info->sel.family == AF_INET) addr = nl_addr_build (sa_info->sel.family, &sa_info->sel.daddr.a4, sizeof (sa_info->sel.daddr.a4)); else addr = nl_addr_build (sa_info->sel.family, &sa_info->sel.daddr.a6, sizeof (sa_info->sel.daddr.a6)); nl_addr_set_prefixlen (addr, sa_info->sel.prefixlen_d); xfrmnl_sel_set_daddr (sa->sel, addr); /* Drop the reference count from the above set operation */ nl_addr_put(addr); xfrmnl_sel_set_prefixlen_d (sa->sel, sa_info->sel.prefixlen_d); if (sa_info->sel.family == AF_INET) addr = nl_addr_build (sa_info->sel.family, &sa_info->sel.saddr.a4, sizeof (sa_info->sel.saddr.a4)); else addr = nl_addr_build (sa_info->sel.family, &sa_info->sel.saddr.a6, sizeof (sa_info->sel.saddr.a6)); nl_addr_set_prefixlen (addr, sa_info->sel.prefixlen_s); xfrmnl_sel_set_saddr (sa->sel, addr); /* Drop the reference count from the above set operation */ nl_addr_put(addr); xfrmnl_sel_set_prefixlen_s (sa->sel, sa_info->sel.prefixlen_s); xfrmnl_sel_set_dport (sa->sel, ntohs(sa_info->sel.dport)); xfrmnl_sel_set_dportmask (sa->sel, ntohs(sa_info->sel.dport_mask)); xfrmnl_sel_set_sport (sa->sel, ntohs(sa_info->sel.sport)); xfrmnl_sel_set_sportmask (sa->sel, ntohs(sa_info->sel.sport_mask)); xfrmnl_sel_set_family (sa->sel, sa_info->sel.family); xfrmnl_sel_set_proto (sa->sel, sa_info->sel.proto); xfrmnl_sel_set_ifindex (sa->sel, sa_info->sel.ifindex); xfrmnl_sel_set_userid (sa->sel, sa_info->sel.user); sa->ce_mask |= XFRM_SA_ATTR_SEL; if (sa_info->family == AF_INET) sa->id.daddr = nl_addr_build (sa_info->family, &sa_info->id.daddr.a4, sizeof (sa_info->id.daddr.a4)); else sa->id.daddr = nl_addr_build (sa_info->family, &sa_info->id.daddr.a6, sizeof (sa_info->id.daddr.a6)); sa->id.spi = ntohl(sa_info->id.spi); sa->id.proto = sa_info->id.proto; sa->ce_mask |= (XFRM_SA_ATTR_DADDR | XFRM_SA_ATTR_SPI | XFRM_SA_ATTR_PROTO); if (sa_info->family == AF_INET) sa->saddr = nl_addr_build (sa_info->family, &sa_info->saddr.a4, sizeof (sa_info->saddr.a4)); else sa->saddr = nl_addr_build (sa_info->family, &sa_info->saddr.a6, sizeof (sa_info->saddr.a6)); sa->ce_mask |= XFRM_SA_ATTR_SADDR; sa->lft->soft_byte_limit = sa_info->lft.soft_byte_limit; sa->lft->hard_byte_limit = sa_info->lft.hard_byte_limit; sa->lft->soft_packet_limit = sa_info->lft.soft_packet_limit; sa->lft->hard_packet_limit = sa_info->lft.hard_packet_limit; sa->lft->soft_add_expires_seconds = sa_info->lft.soft_add_expires_seconds; sa->lft->hard_add_expires_seconds = sa_info->lft.hard_add_expires_seconds; sa->lft->soft_use_expires_seconds = sa_info->lft.soft_use_expires_seconds; sa->lft->hard_use_expires_seconds = sa_info->lft.hard_use_expires_seconds; sa->ce_mask |= XFRM_SA_ATTR_LTIME_CFG; sa->curlft.bytes = sa_info->curlft.bytes; sa->curlft.packets = sa_info->curlft.packets; sa->curlft.add_time = sa_info->curlft.add_time; sa->curlft.use_time = sa_info->curlft.use_time; sa->ce_mask |= XFRM_SA_ATTR_LTIME_CUR; sa->stats.replay_window = sa_info->stats.replay_window; sa->stats.replay = sa_info->stats.replay; sa->stats.integrity_failed = sa_info->stats.integrity_failed; sa->ce_mask |= XFRM_SA_ATTR_STATS; sa->seq = sa_info->seq; sa->reqid = sa_info->reqid; sa->family = sa_info->family; sa->mode = sa_info->mode; sa->replay_window = sa_info->replay_window; sa->flags = sa_info->flags; sa->ce_mask |= (XFRM_SA_ATTR_SEQ | XFRM_SA_ATTR_REQID | XFRM_SA_ATTR_FAMILY | XFRM_SA_ATTR_MODE | XFRM_SA_ATTR_REPLAY_WIN | XFRM_SA_ATTR_FLAGS); if (tb[XFRMA_ALG_AEAD]) { struct xfrm_algo_aead* aead = nla_data(tb[XFRMA_ALG_AEAD]); len = sizeof (struct xfrmnl_algo_aead) + ((aead->alg_key_len + 7) / 8); if ((sa->aead = calloc (1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } memcpy ((void *)sa->aead, (void *)aead, len); sa->ce_mask |= XFRM_SA_ATTR_ALG_AEAD; } if (tb[XFRMA_ALG_AUTH_TRUNC]) { struct xfrm_algo_auth* auth = nla_data(tb[XFRMA_ALG_AUTH_TRUNC]); len = sizeof (struct xfrmnl_algo_auth) + ((auth->alg_key_len + 7) / 8); if ((sa->auth = calloc (1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } memcpy ((void *)sa->auth, (void *)auth, len); sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH; } if (tb[XFRMA_ALG_AUTH] && !sa->auth) { struct xfrm_algo* auth = nla_data(tb[XFRMA_ALG_AUTH]); len = sizeof (struct xfrmnl_algo_auth) + ((auth->alg_key_len + 7) / 8); if ((sa->auth = calloc (1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } strcpy(sa->auth->alg_name, auth->alg_name); memcpy(sa->auth->alg_key, auth->alg_key, (auth->alg_key_len + 7) / 8); sa->auth->alg_key_len = auth->alg_key_len; sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH; } if (tb[XFRMA_ALG_CRYPT]) { struct xfrm_algo* crypt = nla_data(tb[XFRMA_ALG_CRYPT]); len = sizeof (struct xfrmnl_algo) + ((crypt->alg_key_len + 7) / 8); if ((sa->crypt = calloc (1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } memcpy ((void *)sa->crypt, (void *)crypt, len); sa->ce_mask |= XFRM_SA_ATTR_ALG_CRYPT; } if (tb[XFRMA_ALG_COMP]) { struct xfrm_algo* comp = nla_data(tb[XFRMA_ALG_COMP]); len = sizeof (struct xfrmnl_algo) + ((comp->alg_key_len + 7) / 8); if ((sa->comp = calloc (1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } memcpy ((void *)sa->comp, (void *)comp, len); sa->ce_mask |= XFRM_SA_ATTR_ALG_COMP; } if (tb[XFRMA_ENCAP]) { struct xfrm_encap_tmpl* encap = nla_data(tb[XFRMA_ENCAP]); len = sizeof (struct xfrmnl_encap_tmpl); if ((sa->encap = calloc (1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } sa->encap->encap_type = encap->encap_type; sa->encap->encap_sport = ntohs(encap->encap_sport); sa->encap->encap_dport = ntohs(encap->encap_dport); if (sa_info->family == AF_INET) sa->encap->encap_oa = nl_addr_build (sa_info->family, &encap->encap_oa.a4, sizeof (encap->encap_oa.a4)); else sa->encap->encap_oa = nl_addr_build (sa_info->family, &encap->encap_oa.a6, sizeof (encap->encap_oa.a6)); sa->ce_mask |= XFRM_SA_ATTR_ENCAP; } if (tb[XFRMA_TFCPAD]) { sa->tfcpad = *(uint32_t*)nla_data(tb[XFRMA_TFCPAD]); sa->ce_mask |= XFRM_SA_ATTR_TFCPAD; } if (tb[XFRMA_COADDR]) { if (sa_info->family == AF_INET) { sa->coaddr = nl_addr_build(sa_info->family, nla_data(tb[XFRMA_COADDR]), sizeof (uint32_t)); } else { sa->coaddr = nl_addr_build(sa_info->family, nla_data(tb[XFRMA_COADDR]), sizeof (uint32_t) * 4); } sa->ce_mask |= XFRM_SA_ATTR_COADDR; } if (tb[XFRMA_MARK]) { struct xfrm_mark* m = nla_data(tb[XFRMA_MARK]); sa->mark.m = m->m; sa->mark.v = m->v; sa->ce_mask |= XFRM_SA_ATTR_MARK; } if (tb[XFRMA_SEC_CTX]) { struct xfrm_user_sec_ctx* sec_ctx = nla_data(tb[XFRMA_SEC_CTX]); len = sizeof (struct xfrmnl_user_sec_ctx) + sec_ctx->ctx_len; if ((sa->sec_ctx = calloc (1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } memcpy (sa->sec_ctx, sec_ctx, len); sa->ce_mask |= XFRM_SA_ATTR_SECCTX; } if (tb[XFRMA_ETIMER_THRESH]) { sa->replay_maxage = *(uint32_t*)nla_data(tb[XFRMA_ETIMER_THRESH]); sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXAGE; } if (tb[XFRMA_REPLAY_THRESH]) { sa->replay_maxdiff = *(uint32_t*)nla_data(tb[XFRMA_REPLAY_THRESH]); sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXDIFF; } if (tb[XFRMA_REPLAY_ESN_VAL]) { struct xfrm_replay_state_esn* esn = nla_data (tb[XFRMA_REPLAY_ESN_VAL]); len = sizeof (struct xfrmnl_replay_state_esn) + (sizeof (uint32_t) * esn->bmp_len); if ((sa->replay_state_esn = calloc (1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } memcpy ((void *)sa->replay_state_esn, (void *)esn, len); sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE; } else if (tb[XFRMA_REPLAY_VAL]) { struct xfrm_replay_state* replay_state = nla_data (tb[XFRMA_REPLAY_VAL]); sa->replay_state.oseq = replay_state->oseq; sa->replay_state.seq = replay_state->seq; sa->replay_state.bitmap = replay_state->bitmap; sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE; sa->replay_state_esn = NULL; } if (tb[XFRMA_OFFLOAD_DEV]) { struct xfrm_user_offload *offload; len = sizeof(struct xfrmnl_user_offload); if ((sa->user_offload = calloc(1, len)) == NULL) { err = -NLE_NOMEM; goto errout; } offload = nla_data(tb[XFRMA_OFFLOAD_DEV]); sa->user_offload->ifindex = offload->ifindex; sa->user_offload->flags = offload->flags; sa->ce_mask |= XFRM_SA_ATTR_OFFLOAD_DEV; } *result = sa; return 0; errout: xfrmnl_sa_put(sa); return err; } static int xfrm_sa_update_cache (struct nl_cache *cache, struct nl_object *obj, change_func_t change_cb, change_func_v2_t change_cb_v2, void *data) { struct nl_object* old_sa; struct xfrmnl_sa* sa = (struct xfrmnl_sa*)obj; if (nl_object_get_msgtype (obj) == XFRM_MSG_EXPIRE) { /* On hard expiry, the SA gets deleted too from the kernel state without any * further delete event. On Expire message, we are only updating the cache with * the SA object's new state. In absence of the explicit delete event, the cache will * be out of sync with the kernel state. To get around this, expiry messages cache * operations are handled here (installed with NL_ACT_UNSPEC action) instead of * in Libnl Cache module. */ /* Do we already have this object in the cache? */ old_sa = nl_cache_search(cache, obj); if (old_sa) { /* Found corresponding SA object in cache. Delete it */ nl_cache_remove (old_sa); } /* Handle the expiry event now */ if (sa->hard == 0) { /* Soft expiry event: Save the new object to the * cache and notify application of the expiry event. */ nl_cache_move (cache, obj); if (old_sa == NULL) { /* Application CB present, no previous instance of SA object present. * Notify application CB as a NEW event */ if (change_cb_v2) change_cb_v2(cache, NULL, obj, 0, NL_ACT_NEW, data); else if (change_cb) change_cb(cache, obj, NL_ACT_NEW, data); } else if (old_sa) { uint64_t diff = 0; if (change_cb || change_cb_v2) diff = nl_object_diff64(old_sa, obj); /* Application CB present, a previous instance of SA object present. * Notify application CB as a CHANGE1 event */ if (diff) { if (change_cb_v2) { change_cb_v2(cache, old_sa, obj, diff, NL_ACT_CHANGE, data); } else if (change_cb) change_cb(cache, obj, NL_ACT_CHANGE, data); } nl_object_put (old_sa); } } else { /* Hard expiry event: Delete the object from the * cache and notify application of the expiry event. */ if (change_cb_v2) change_cb_v2(cache, obj, NULL, 0, NL_ACT_DEL, data); else if (change_cb) change_cb (cache, obj, NL_ACT_DEL, data); nl_object_put (old_sa); } /* Done handling expire message */ return 0; } else { /* All other messages other than Expire, let the standard Libnl cache * module handle it. */ if (change_cb_v2) return nl_cache_include_v2(cache, obj, change_cb_v2, data); else return nl_cache_include (cache, obj, change_cb, data); } } static int xfrm_sa_msg_parser(struct nl_cache_ops *ops, struct sockaddr_nl *who, struct nlmsghdr *n, struct nl_parser_param *pp) { struct xfrmnl_sa* sa; int err; if ((err = xfrmnl_sa_parse(n, &sa)) < 0) return err; err = pp->pp_cb((struct nl_object *) sa, pp); xfrmnl_sa_put(sa); return err; } /** * @name XFRM SA Get * @{ */ int xfrmnl_sa_build_get_request(struct nl_addr* daddr, unsigned int spi, unsigned int protocol, unsigned int mark_v, unsigned int mark_m, struct nl_msg **result) { struct nl_msg *msg; struct xfrm_usersa_id sa_id; struct xfrm_mark mark; if (!daddr || !spi) { fprintf(stderr, "APPLICATION BUG: %s:%d:%s: A valid destination address, spi must be specified\n", __FILE__, __LINE__, __func__); assert(0); return -NLE_MISSING_ATTR; } memset(&sa_id, 0, sizeof(sa_id)); memcpy (&sa_id.daddr, nl_addr_get_binary_addr (daddr), sizeof (uint8_t) * nl_addr_get_len (daddr)); sa_id.family = nl_addr_get_family (daddr); sa_id.spi = htonl(spi); sa_id.proto = protocol; if (!(msg = nlmsg_alloc_simple(XFRM_MSG_GETSA, 0))) return -NLE_NOMEM; if (nlmsg_append(msg, &sa_id, sizeof(sa_id), NLMSG_ALIGNTO) < 0) goto nla_put_failure; if ((mark_m & mark_v) != 0) { memset(&mark, 0, sizeof(struct xfrm_mark)); mark.m = mark_m; mark.v = mark_v; NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &mark); } *result = msg; return 0; nla_put_failure: nlmsg_free(msg); return -NLE_MSGSIZE; } int xfrmnl_sa_get_kernel(struct nl_sock* sock, struct nl_addr* daddr, unsigned int spi, unsigned int protocol, unsigned int mark_v, unsigned int mark_m, struct xfrmnl_sa** result) { struct nl_msg *msg = NULL; struct nl_object *obj; int err; if ((err = xfrmnl_sa_build_get_request(daddr, spi, protocol, mark_m, mark_v, &msg)) < 0) return err; err = nl_send_auto(sock, msg); nlmsg_free(msg); if (err < 0) return err; if ((err = nl_pickup(sock, &xfrm_sa_msg_parser, &obj)) < 0) return err; /* We have used xfrm_sa_msg_parser(), object is definitely a xfrm sa */ *result = (struct xfrmnl_sa *) obj; /* If an object has been returned, we also need to wait for the ACK */ if (err == 0 && obj) nl_wait_for_ack(sock); return 0; } /** @} */ static int build_xfrm_sa_message(struct xfrmnl_sa *tmpl, int cmd, int flags, struct nl_msg **result) { struct nl_msg* msg; struct xfrm_usersa_info sa_info; uint32_t len; struct nl_addr* addr; if (!(tmpl->ce_mask & XFRM_SA_ATTR_DADDR) || !(tmpl->ce_mask & XFRM_SA_ATTR_SPI) || !(tmpl->ce_mask & XFRM_SA_ATTR_PROTO)) return -NLE_MISSING_ATTR; memset ((void*)&sa_info, 0, sizeof (sa_info)); if (tmpl->ce_mask & XFRM_SA_ATTR_SEL) { addr = xfrmnl_sel_get_daddr (tmpl->sel); memcpy ((void*)&sa_info.sel.daddr, (void*)nl_addr_get_binary_addr (addr), sizeof (uint8_t) * nl_addr_get_len (addr)); addr = xfrmnl_sel_get_saddr (tmpl->sel); memcpy ((void*)&sa_info.sel.saddr, (void*)nl_addr_get_binary_addr (addr), sizeof (uint8_t) * nl_addr_get_len (addr)); sa_info.sel.dport = htons (xfrmnl_sel_get_dport (tmpl->sel)); sa_info.sel.dport_mask = htons (xfrmnl_sel_get_dportmask (tmpl->sel)); sa_info.sel.sport = htons (xfrmnl_sel_get_sport (tmpl->sel)); sa_info.sel.sport_mask = htons (xfrmnl_sel_get_sportmask (tmpl->sel)); sa_info.sel.family = xfrmnl_sel_get_family (tmpl->sel); sa_info.sel.prefixlen_d = xfrmnl_sel_get_prefixlen_d (tmpl->sel); sa_info.sel.prefixlen_s = xfrmnl_sel_get_prefixlen_s (tmpl->sel); sa_info.sel.proto = xfrmnl_sel_get_proto (tmpl->sel); sa_info.sel.ifindex = xfrmnl_sel_get_ifindex (tmpl->sel); sa_info.sel.user = xfrmnl_sel_get_userid (tmpl->sel); } memcpy (&sa_info.id.daddr, nl_addr_get_binary_addr (tmpl->id.daddr), sizeof (uint8_t) * nl_addr_get_len (tmpl->id.daddr)); sa_info.id.spi = htonl(tmpl->id.spi); sa_info.id.proto = tmpl->id.proto; if (tmpl->ce_mask & XFRM_SA_ATTR_SADDR) memcpy (&sa_info.saddr, nl_addr_get_binary_addr (tmpl->saddr), sizeof (uint8_t) * nl_addr_get_len (tmpl->saddr)); if (tmpl->ce_mask & XFRM_SA_ATTR_LTIME_CFG) { sa_info.lft.soft_byte_limit = xfrmnl_ltime_cfg_get_soft_bytelimit (tmpl->lft); sa_info.lft.hard_byte_limit = xfrmnl_ltime_cfg_get_hard_bytelimit (tmpl->lft); sa_info.lft.soft_packet_limit = xfrmnl_ltime_cfg_get_soft_packetlimit (tmpl->lft); sa_info.lft.hard_packet_limit = xfrmnl_ltime_cfg_get_hard_packetlimit (tmpl->lft); sa_info.lft.soft_add_expires_seconds = xfrmnl_ltime_cfg_get_soft_addexpires (tmpl->lft); sa_info.lft.hard_add_expires_seconds = xfrmnl_ltime_cfg_get_hard_addexpires (tmpl->lft); sa_info.lft.soft_use_expires_seconds = xfrmnl_ltime_cfg_get_soft_useexpires (tmpl->lft); sa_info.lft.hard_use_expires_seconds = xfrmnl_ltime_cfg_get_hard_useexpires (tmpl->lft); } //Skip current lifetime: cur lifetime can be updated only via AE //Skip stats: stats cant be updated //Skip seq: seq cant be updated if (tmpl->ce_mask & XFRM_SA_ATTR_REQID) sa_info.reqid = tmpl->reqid; if (tmpl->ce_mask & XFRM_SA_ATTR_FAMILY) sa_info.family = tmpl->family; if (tmpl->ce_mask & XFRM_SA_ATTR_MODE) sa_info.mode = tmpl->mode; if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_WIN) sa_info.replay_window = tmpl->replay_window; if (tmpl->ce_mask & XFRM_SA_ATTR_FLAGS) sa_info.flags = tmpl->flags; msg = nlmsg_alloc_simple(cmd, flags); if (!msg) return -NLE_NOMEM; if (nlmsg_append(msg, &sa_info, sizeof(sa_info), NLMSG_ALIGNTO) < 0) goto nla_put_failure; if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_AEAD) { len = sizeof (struct xfrm_algo_aead) + ((tmpl->aead->alg_key_len + 7) / 8); NLA_PUT (msg, XFRMA_ALG_AEAD, len, tmpl->aead); } if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_AUTH) { /* kernel prefers XFRMA_ALG_AUTH_TRUNC over XFRMA_ALG_AUTH, so only * one of the attributes needs to be present */ if (tmpl->auth->alg_trunc_len) { len = sizeof (struct xfrm_algo_auth) + ((tmpl->auth->alg_key_len + 7) / 8); NLA_PUT (msg, XFRMA_ALG_AUTH_TRUNC, len, tmpl->auth); } else { struct xfrm_algo *auth; len = sizeof (struct xfrm_algo) + ((tmpl->auth->alg_key_len + 7) / 8); auth = malloc(len); if (!auth) { nlmsg_free(msg); return -NLE_NOMEM; } _nl_strncpy_assert(auth->alg_name, tmpl->auth->alg_name, sizeof(auth->alg_name)); auth->alg_key_len = tmpl->auth->alg_key_len; memcpy(auth->alg_key, tmpl->auth->alg_key, (tmpl->auth->alg_key_len + 7) / 8); if (nla_put(msg, XFRMA_ALG_AUTH, len, auth) < 0) { free(auth); goto nla_put_failure; } free(auth); } } if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_CRYPT) { len = sizeof (struct xfrm_algo) + ((tmpl->crypt->alg_key_len + 7) / 8); NLA_PUT (msg, XFRMA_ALG_CRYPT, len, tmpl->crypt); } if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_COMP) { len = sizeof (struct xfrm_algo) + ((tmpl->comp->alg_key_len + 7) / 8); NLA_PUT (msg, XFRMA_ALG_COMP, len, tmpl->comp); } if (tmpl->ce_mask & XFRM_SA_ATTR_ENCAP) { struct xfrm_encap_tmpl* encap_tmpl; struct nlattr* encap_attr; len = sizeof (struct xfrm_encap_tmpl); encap_attr = nla_reserve(msg, XFRMA_ENCAP, len); if (!encap_attr) goto nla_put_failure; encap_tmpl = nla_data (encap_attr); encap_tmpl->encap_type = tmpl->encap->encap_type; encap_tmpl->encap_sport = htons (tmpl->encap->encap_sport); encap_tmpl->encap_dport = htons (tmpl->encap->encap_dport); memcpy (&encap_tmpl->encap_oa, nl_addr_get_binary_addr (tmpl->encap->encap_oa), sizeof (uint8_t) * nl_addr_get_len (tmpl->encap->encap_oa)); } if (tmpl->ce_mask & XFRM_SA_ATTR_TFCPAD) { NLA_PUT_U32 (msg, XFRMA_TFCPAD, tmpl->tfcpad); } if (tmpl->ce_mask & XFRM_SA_ATTR_COADDR) { NLA_PUT (msg, XFRMA_COADDR, sizeof (xfrm_address_t), tmpl->coaddr); } if (tmpl->ce_mask & XFRM_SA_ATTR_MARK) { NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &tmpl->mark); } if (tmpl->ce_mask & XFRM_SA_ATTR_SECCTX) { len = sizeof (struct xfrm_sec_ctx) + tmpl->sec_ctx->ctx_len; NLA_PUT (msg, XFRMA_SEC_CTX, len, tmpl->sec_ctx); } if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_MAXAGE) { NLA_PUT_U32 (msg, XFRMA_ETIMER_THRESH, tmpl->replay_maxage); } if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_MAXDIFF) { NLA_PUT_U32 (msg, XFRMA_REPLAY_THRESH, tmpl->replay_maxdiff); } if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_STATE) { if (tmpl->replay_state_esn) { len = sizeof (struct xfrm_replay_state_esn) + (sizeof (uint32_t) * tmpl->replay_state_esn->bmp_len); NLA_PUT (msg, XFRMA_REPLAY_ESN_VAL, len, tmpl->replay_state_esn); } else { NLA_PUT (msg, XFRMA_REPLAY_VAL, sizeof (struct xfrm_replay_state), &tmpl->replay_state); } } if (tmpl->ce_mask & XFRM_SA_ATTR_OFFLOAD_DEV) { struct xfrm_user_offload *offload; struct nlattr *attr; len = sizeof(struct xfrm_user_offload); attr = nla_reserve(msg, XFRMA_OFFLOAD_DEV, len); if (!attr) goto nla_put_failure; offload = nla_data(attr); offload->ifindex = tmpl->user_offload->ifindex; offload->flags = tmpl->user_offload->flags; } *result = msg; return 0; nla_put_failure: nlmsg_free(msg); return -NLE_MSGSIZE; } /** * @name XFRM SA Add * @{ */ int xfrmnl_sa_build_add_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result) { return build_xfrm_sa_message (tmpl, XFRM_MSG_NEWSA, flags, result); } int xfrmnl_sa_add(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags) { int err; struct nl_msg *msg; if ((err = xfrmnl_sa_build_add_request(tmpl, flags, &msg)) < 0) return err; err = nl_send_auto_complete(sk, msg); nlmsg_free(msg); if (err < 0) return err; return nl_wait_for_ack(sk); } /** * @name XFRM SA Update * @{ */ int xfrmnl_sa_build_update_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result) { return build_xfrm_sa_message (tmpl, XFRM_MSG_UPDSA, flags, result); } int xfrmnl_sa_update(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags) { int err; struct nl_msg *msg; if ((err = xfrmnl_sa_build_update_request(tmpl, flags, &msg)) < 0) return err; err = nl_send_auto_complete(sk, msg); nlmsg_free(msg); if (err < 0) return err; return nl_wait_for_ack(sk); } /** @} */ static int build_xfrm_sa_delete_message(struct xfrmnl_sa *tmpl, int cmd, int flags, struct nl_msg **result) { struct nl_msg* msg; struct xfrm_usersa_id sa_id; if (!(tmpl->ce_mask & XFRM_SA_ATTR_DADDR) || !(tmpl->ce_mask & XFRM_SA_ATTR_SPI) || !(tmpl->ce_mask & XFRM_SA_ATTR_PROTO)) return -NLE_MISSING_ATTR; memset(&sa_id, 0, sizeof(struct xfrm_usersa_id)); memcpy (&sa_id.daddr, nl_addr_get_binary_addr (tmpl->id.daddr), sizeof (uint8_t) * nl_addr_get_len (tmpl->id.daddr)); sa_id.family = nl_addr_get_family (tmpl->id.daddr); sa_id.spi = htonl(tmpl->id.spi); sa_id.proto = tmpl->id.proto; msg = nlmsg_alloc_simple(cmd, flags); if (!msg) return -NLE_NOMEM; if (nlmsg_append(msg, &sa_id, sizeof(sa_id), NLMSG_ALIGNTO) < 0) goto nla_put_failure; if (tmpl->ce_mask & XFRM_SA_ATTR_MARK) { NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &tmpl->mark); } *result = msg; return 0; nla_put_failure: nlmsg_free(msg); return -NLE_MSGSIZE; } /** * @name XFRM SA Delete * @{ */ int xfrmnl_sa_build_delete_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result) { return build_xfrm_sa_delete_message (tmpl, XFRM_MSG_DELSA, flags, result); } int xfrmnl_sa_delete(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags) { int err; struct nl_msg *msg; if ((err = xfrmnl_sa_build_delete_request(tmpl, flags, &msg)) < 0) return err; err = nl_send_auto_complete(sk, msg); nlmsg_free(msg); if (err < 0) return err; return nl_wait_for_ack(sk); } /** @} */ /** * @name Attributes * @{ */ struct xfrmnl_sel* xfrmnl_sa_get_sel (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_SEL) return sa->sel; else return NULL; } int xfrmnl_sa_set_sel (struct xfrmnl_sa* sa, struct xfrmnl_sel* sel) { /* Release any previously held selector object from the SA */ if (sa->sel) xfrmnl_sel_put (sa->sel); /* Increment ref count on new selector and save it in the SA */ xfrmnl_sel_get (sel); sa->sel = sel; sa->ce_mask |= XFRM_SA_ATTR_SEL; return 0; } static inline int __assign_addr(struct xfrmnl_sa* sa, struct nl_addr **pos, struct nl_addr *new, int flag, int nocheck) { if (!nocheck) { if (sa->ce_mask & XFRM_SA_ATTR_FAMILY) { if (nl_addr_get_family (new) != sa->family) return -NLE_AF_MISMATCH; } } if (*pos) nl_addr_put(*pos); nl_addr_get(new); *pos = new; sa->ce_mask |= flag; return 0; } struct nl_addr* xfrmnl_sa_get_daddr (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_DADDR) return sa->id.daddr; else return NULL; } int xfrmnl_sa_set_daddr (struct xfrmnl_sa* sa, struct nl_addr* addr) { return __assign_addr(sa, &sa->id.daddr, addr, XFRM_SA_ATTR_DADDR, 0); } int xfrmnl_sa_get_spi (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_SPI) return sa->id.spi; else return -1; } int xfrmnl_sa_set_spi (struct xfrmnl_sa* sa, unsigned int spi) { sa->id.spi = spi; sa->ce_mask |= XFRM_SA_ATTR_SPI; return 0; } int xfrmnl_sa_get_proto (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_PROTO) return sa->id.proto; else return -1; } int xfrmnl_sa_set_proto (struct xfrmnl_sa* sa, unsigned int protocol) { sa->id.proto = protocol; sa->ce_mask |= XFRM_SA_ATTR_PROTO; return 0; } struct nl_addr* xfrmnl_sa_get_saddr (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_SADDR) return sa->saddr; else return NULL; } int xfrmnl_sa_set_saddr (struct xfrmnl_sa* sa, struct nl_addr* addr) { return __assign_addr(sa, &sa->saddr, addr, XFRM_SA_ATTR_SADDR, 1); } struct xfrmnl_ltime_cfg* xfrmnl_sa_get_lifetime_cfg (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_LTIME_CFG) return sa->lft; else return NULL; } int xfrmnl_sa_set_lifetime_cfg (struct xfrmnl_sa* sa, struct xfrmnl_ltime_cfg* ltime) { /* Release any previously held lifetime cfg object from the SA */ if (sa->lft) xfrmnl_ltime_cfg_put (sa->lft); /* Increment ref count on new lifetime object and save it in the SA */ xfrmnl_ltime_cfg_get (ltime); sa->lft = ltime; sa->ce_mask |= XFRM_SA_ATTR_LTIME_CFG; return 0; } int xfrmnl_sa_get_curlifetime (struct xfrmnl_sa* sa, unsigned long long int* curr_bytes, unsigned long long int* curr_packets, unsigned long long int* curr_add_time, unsigned long long int* curr_use_time) { if (sa == NULL || curr_bytes == NULL || curr_packets == NULL || curr_add_time == NULL || curr_use_time == NULL) return -1; if (sa->ce_mask & XFRM_SA_ATTR_LTIME_CUR) { *curr_bytes = sa->curlft.bytes; *curr_packets = sa->curlft.packets; *curr_add_time = sa->curlft.add_time; *curr_use_time = sa->curlft.use_time; } else return -1; return 0; } int xfrmnl_sa_get_stats (struct xfrmnl_sa* sa, unsigned long long int* replay_window, unsigned long long int* replay, unsigned long long int* integrity_failed) { if (sa == NULL || replay_window == NULL || replay == NULL || integrity_failed == NULL) return -1; if (sa->ce_mask & XFRM_SA_ATTR_STATS) { *replay_window = sa->stats.replay_window; *replay = sa->stats.replay; *integrity_failed = sa->stats.integrity_failed; } else return -1; return 0; } int xfrmnl_sa_get_seq (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_SEQ) return sa->seq; else return -1; } int xfrmnl_sa_get_reqid (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_REQID) return sa->reqid; else return -1; } int xfrmnl_sa_set_reqid (struct xfrmnl_sa* sa, unsigned int reqid) { sa->reqid = reqid; sa->ce_mask |= XFRM_SA_ATTR_REQID; return 0; } int xfrmnl_sa_get_family (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_FAMILY) return sa->family; else return -1; } int xfrmnl_sa_set_family (struct xfrmnl_sa* sa, unsigned int family) { sa->family = family; sa->ce_mask |= XFRM_SA_ATTR_FAMILY; return 0; } int xfrmnl_sa_get_mode (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_MODE) return sa->mode; else return -1; } int xfrmnl_sa_set_mode (struct xfrmnl_sa* sa, unsigned int mode) { sa->mode = mode; sa->ce_mask |= XFRM_SA_ATTR_MODE; return 0; } int xfrmnl_sa_get_replay_window (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_WIN) return sa->replay_window; else return -1; } int xfrmnl_sa_set_replay_window (struct xfrmnl_sa* sa, unsigned int replay_window) { sa->replay_window = replay_window; sa->ce_mask |= XFRM_SA_ATTR_REPLAY_WIN; return 0; } int xfrmnl_sa_get_flags (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_FLAGS) return sa->flags; else return -1; } int xfrmnl_sa_set_flags (struct xfrmnl_sa* sa, unsigned int flags) { sa->flags = flags; sa->ce_mask |= XFRM_SA_ATTR_FLAGS; return 0; } /** * Get the aead-params * @arg sa the xfrmnl_sa object * @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes. * @arg key_len an optional output value for the key length in bits. * @arg icv_len an optional output value for the alt-icv-len. * @arg key an optional buffer large enough for the key. It must contain at least * ((@key_len + 7) / 8) bytes. * * Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand, * call xfrmnl_sa_get_aead_params() without @key argument to query only the required buffer size. * This modified API is available in all versions of libnl3 that support the capability * @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information). * * @return 0 on success or a negative error code. */ int xfrmnl_sa_get_aead_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, unsigned int* icv_len, char* key) { if (sa->ce_mask & XFRM_SA_ATTR_ALG_AEAD) { if (alg_name) strcpy (alg_name, sa->aead->alg_name); if (key_len) *key_len = sa->aead->alg_key_len; if (icv_len) *icv_len = sa->aead->alg_icv_len; if (key) memcpy (key, sa->aead->alg_key, ((sa->aead->alg_key_len + 7)/8)); } else return -1; return 0; } int xfrmnl_sa_set_aead_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, unsigned int icv_len, const char* key) { _nl_auto_free struct xfrmnl_algo_aead *b = NULL; size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8); uint32_t newlen = sizeof (struct xfrmnl_algo_aead) + keysize; /* Free up the old key and allocate memory to hold new key */ if (strlen (alg_name) >= sizeof (sa->aead->alg_name)) return -1; if (!(b = calloc (1, newlen))) return -1; strcpy (b->alg_name, alg_name); b->alg_key_len = key_len; b->alg_icv_len = icv_len; memcpy (b->alg_key, key, keysize); free (sa->aead); sa->aead = _nl_steal_pointer (&b); sa->ce_mask |= XFRM_SA_ATTR_ALG_AEAD; return 0; } /** * Get the auth-params * @arg sa the xfrmnl_sa object * @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes. * @arg key_len an optional output value for the key length in bits. * @arg trunc_len an optional output value for the alg-trunc-len. * @arg key an optional buffer large enough for the key. It must contain at least * ((@key_len + 7) / 8) bytes. * * Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand, * call xfrmnl_sa_get_auth_params() without @key argument to query only the required buffer size. * This modified API is available in all versions of libnl3 that support the capability * @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information). * * @return 0 on success or a negative error code. */ int xfrmnl_sa_get_auth_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, unsigned int* trunc_len, char* key) { if (sa->ce_mask & XFRM_SA_ATTR_ALG_AUTH) { if (alg_name) strcpy (alg_name, sa->auth->alg_name); if (key_len) *key_len = sa->auth->alg_key_len; if (trunc_len) *trunc_len = sa->auth->alg_trunc_len; if (key) memcpy (key, sa->auth->alg_key, (sa->auth->alg_key_len + 7)/8); } else return -1; return 0; } int xfrmnl_sa_set_auth_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, unsigned int trunc_len, const char* key) { _nl_auto_free struct xfrmnl_algo_auth *b = NULL; size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8); uint32_t newlen = sizeof (struct xfrmnl_algo_auth) + keysize; if (strlen (alg_name) >= sizeof (sa->auth->alg_name)) return -1; if (!(b = calloc (1, newlen))) return -1; strcpy (b->alg_name, alg_name); b->alg_key_len = key_len; b->alg_trunc_len = trunc_len; memcpy (b->alg_key, key, keysize); free (sa->auth); sa->auth = _nl_steal_pointer (&b); sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH; return 0; } /** * Get the crypto-params * @arg sa the xfrmnl_sa object * @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes. * @arg key_len an optional output value for the key length in bits. * @arg key an optional buffer large enough for the key. It must contain at least * ((@key_len + 7) / 8) bytes. * * Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand, * call xfrmnl_sa_get_crypto_params() without @key argument to query only the required buffer size. * This modified API is available in all versions of libnl3 that support the capability * @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information). * * @return 0 on success or a negative error code. */ int xfrmnl_sa_get_crypto_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, char* key) { if (sa->ce_mask & XFRM_SA_ATTR_ALG_CRYPT) { if (alg_name) strcpy (alg_name, sa->crypt->alg_name); if (key_len) *key_len = sa->crypt->alg_key_len; if (key) memcpy (key, sa->crypt->alg_key, ((sa->crypt->alg_key_len + 7)/8)); } else return -1; return 0; } int xfrmnl_sa_set_crypto_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, const char* key) { _nl_auto_free struct xfrmnl_algo *b = NULL; size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8); uint32_t newlen = sizeof (struct xfrmnl_algo) + keysize; if (strlen (alg_name) >= sizeof (sa->crypt->alg_name)) return -1; if (!(b = calloc (1, newlen))) return -1; strcpy (b->alg_name, alg_name); b->alg_key_len = key_len; memcpy (b->alg_key, key, keysize); free(sa->crypt); sa->crypt = _nl_steal_pointer(&b); sa->ce_mask |= XFRM_SA_ATTR_ALG_CRYPT; return 0; } /** * Get the comp-params * @arg sa the xfrmnl_sa object * @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes. * @arg key_len an optional output value for the key length in bits. * @arg key an optional buffer large enough for the key. It must contain at least * ((@key_len + 7) / 8) bytes. * * Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand, * call xfrmnl_sa_get_comp_params() without @key argument to query only the required buffer size. * This modified API is available in all versions of libnl3 that support the capability * @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information). * * @return 0 on success or a negative error code. */ int xfrmnl_sa_get_comp_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, char* key) { if (sa->ce_mask & XFRM_SA_ATTR_ALG_COMP) { if (alg_name) strcpy (alg_name, sa->comp->alg_name); if (key_len) *key_len = sa->comp->alg_key_len; if (key) memcpy (key, sa->comp->alg_key, ((sa->comp->alg_key_len + 7)/8)); } else return -1; return 0; } int xfrmnl_sa_set_comp_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, const char* key) { _nl_auto_free struct xfrmnl_algo *b = NULL; size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8); uint32_t newlen = sizeof (struct xfrmnl_algo) + keysize; if (strlen (alg_name) >= sizeof (sa->comp->alg_name)) return -1; if (!(b = calloc (1, newlen))) return -1; strcpy (b->alg_name, alg_name); b->alg_key_len = key_len; memcpy (b->alg_key, key, keysize); free(sa->comp); sa->comp = _nl_steal_pointer(&b); sa->ce_mask |= XFRM_SA_ATTR_ALG_COMP; return 0; } int xfrmnl_sa_get_encap_tmpl (struct xfrmnl_sa* sa, unsigned int* encap_type, unsigned int* encap_sport, unsigned int* encap_dport, struct nl_addr** encap_oa) { if (sa->ce_mask & XFRM_SA_ATTR_ENCAP) { *encap_type = sa->encap->encap_type; *encap_sport = sa->encap->encap_sport; *encap_dport = sa->encap->encap_dport; *encap_oa = nl_addr_clone (sa->encap->encap_oa); } else return -1; return 0; } int xfrmnl_sa_set_encap_tmpl (struct xfrmnl_sa* sa, unsigned int encap_type, unsigned int encap_sport, unsigned int encap_dport, struct nl_addr* encap_oa) { if (sa->encap) { /* Free up the old encap OA */ if (sa->encap->encap_oa) nl_addr_put(sa->encap->encap_oa); memset(sa->encap, 0, sizeof (*sa->encap)); } else if ((sa->encap = calloc(1, sizeof(*sa->encap))) == NULL) return -1; /* Save the new info */ sa->encap->encap_type = encap_type; sa->encap->encap_sport = encap_sport; sa->encap->encap_dport = encap_dport; nl_addr_get (encap_oa); sa->encap->encap_oa = encap_oa; sa->ce_mask |= XFRM_SA_ATTR_ENCAP; return 0; } int xfrmnl_sa_get_tfcpad (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_TFCPAD) return sa->tfcpad; else return -1; } int xfrmnl_sa_set_tfcpad (struct xfrmnl_sa* sa, unsigned int tfcpad) { sa->tfcpad = tfcpad; sa->ce_mask |= XFRM_SA_ATTR_TFCPAD; return 0; } struct nl_addr* xfrmnl_sa_get_coaddr (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_COADDR) return sa->coaddr; else return NULL; } int xfrmnl_sa_set_coaddr (struct xfrmnl_sa* sa, struct nl_addr* coaddr) { /* Free up the old coaddr */ if (sa->coaddr) nl_addr_put (sa->coaddr); /* Save the new info */ nl_addr_get (coaddr); sa->coaddr = coaddr; sa->ce_mask |= XFRM_SA_ATTR_COADDR; return 0; } int xfrmnl_sa_get_mark (struct xfrmnl_sa* sa, unsigned int* mark_mask, unsigned int* mark_value) { if (mark_mask == NULL || mark_value == NULL) return -1; if (sa->ce_mask & XFRM_SA_ATTR_MARK) { *mark_mask = sa->mark.m; *mark_value = sa->mark.v; return 0; } else return -1; } int xfrmnl_sa_set_mark (struct xfrmnl_sa* sa, unsigned int value, unsigned int mask) { sa->mark.v = value; sa->mark.m = mask; sa->ce_mask |= XFRM_SA_ATTR_MARK; return 0; } /** * Get the security context. * * @arg sa The xfrmnl_sa object. * @arg doi An optional output value for the security context domain of interpretation. * @arg alg An optional output value for the security context algorithm. * @arg len An optional output value for the security context length, including the * terminating null byte ('\0'). * @arg sid Unused parameter. * @arg ctx_str An optional buffer large enough for the security context string. It must * contain at least @len bytes. * * Warning: you must ensure that @ctx_str is large enough. If you don't know the length before-hand, * call xfrmnl_sa_get_sec_ctx() without @ctx_str argument to query only the required buffer size. * This modified API is available in all versions of libnl3 that support the capability * @def NL_CAPABILITY_XFRM_SEC_CTX_LEN (@see nl_has_capability for further information). * * @return 0 on success or a negative error code. */ int xfrmnl_sa_get_sec_ctx (struct xfrmnl_sa* sa, unsigned int* doi, unsigned int* alg, unsigned int* len, unsigned int* sid, char* ctx_str) { if (sa->ce_mask & XFRM_SA_ATTR_SECCTX) { if (doi) *doi = sa->sec_ctx->ctx_doi; if (alg) *alg = sa->sec_ctx->ctx_alg; if (len) *len = sa->sec_ctx->ctx_len; if (ctx_str) memcpy (ctx_str, sa->sec_ctx->ctx, sa->sec_ctx->ctx_len); } else return -1; return 0; } /** * Set the security context. * * @arg sa The xfrmnl_sa object. * @arg doi Parameter for the security context domain of interpretation. * @arg alg Parameter for the security context algorithm. * @arg len Parameter for the length of the security context string containing * the terminating null byte ('\0'). * @arg sid Unused parameter. * @arg ctx_str Buffer containing the security context string. * * @return 0 on success or a negative error code. */ int xfrmnl_sa_set_sec_ctx (struct xfrmnl_sa* sa, unsigned int doi, unsigned int alg, unsigned int len, unsigned int sid, const char* ctx_str) { _nl_auto_free struct xfrmnl_user_sec_ctx *b = NULL; if (!(b = calloc(1, sizeof (struct xfrmnl_user_sec_ctx) + 1 + len))) return -1; b->len = sizeof(struct xfrmnl_user_sec_ctx) + len; b->exttype = XFRMA_SEC_CTX; b->ctx_alg = alg; b->ctx_doi = doi; b->ctx_len = len; memcpy (b->ctx, ctx_str, len); b->ctx[len] = '\0'; free(sa->sec_ctx); sa->sec_ctx = _nl_steal_pointer(&b); sa->ce_mask |= XFRM_SA_ATTR_SECCTX; return 0; } int xfrmnl_sa_get_replay_maxage (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_MAXAGE) return sa->replay_maxage; else return -1; } int xfrmnl_sa_set_replay_maxage (struct xfrmnl_sa* sa, unsigned int replay_maxage) { sa->replay_maxage = replay_maxage; sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXAGE; return 0; } int xfrmnl_sa_get_replay_maxdiff (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_MAXDIFF) return sa->replay_maxdiff; else return -1; } int xfrmnl_sa_set_replay_maxdiff (struct xfrmnl_sa* sa, unsigned int replay_maxdiff) { sa->replay_maxdiff = replay_maxdiff; sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXDIFF; return 0; } int xfrmnl_sa_get_replay_state (struct xfrmnl_sa* sa, unsigned int* oseq, unsigned int* seq, unsigned int* bmp) { if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE) { if (sa->replay_state_esn == NULL) { *oseq = sa->replay_state.oseq; *seq = sa->replay_state.seq; *bmp = sa->replay_state.bitmap; return 0; } else { return -1; } } else return -1; } int xfrmnl_sa_set_replay_state (struct xfrmnl_sa* sa, unsigned int oseq, unsigned int seq, unsigned int bitmap) { sa->replay_state.oseq = oseq; sa->replay_state.seq = seq; sa->replay_state.bitmap = bitmap; sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE; return 0; } int xfrmnl_sa_get_replay_state_esn (struct xfrmnl_sa* sa, unsigned int* oseq, unsigned int* seq, unsigned int* oseq_hi, unsigned int* seq_hi, unsigned int* replay_window, unsigned int* bmp_len, unsigned int* bmp) { if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE) { if (sa->replay_state_esn) { *oseq = sa->replay_state_esn->oseq; *seq = sa->replay_state_esn->seq; *oseq_hi= sa->replay_state_esn->oseq_hi; *seq_hi = sa->replay_state_esn->seq_hi; *replay_window = sa->replay_state_esn->replay_window; *bmp_len = sa->replay_state_esn->bmp_len; // In number of 32 bit words memcpy (bmp, sa->replay_state_esn->bmp, sa->replay_state_esn->bmp_len * sizeof (uint32_t)); return 0; } else { return -1; } } else return -1; } int xfrmnl_sa_set_replay_state_esn (struct xfrmnl_sa* sa, unsigned int oseq, unsigned int seq, unsigned int oseq_hi, unsigned int seq_hi, unsigned int replay_window, unsigned int bmp_len, unsigned int* bmp) { _nl_auto_free struct xfrmnl_replay_state_esn *b = NULL; if (!(b = calloc (1, sizeof (struct xfrmnl_replay_state_esn) + (sizeof (uint32_t) * bmp_len)))) return -1; b->oseq = oseq; b->seq = seq; b->oseq_hi = oseq_hi; b->seq_hi = seq_hi; b->replay_window = replay_window; b->bmp_len = bmp_len; // In number of 32 bit words memcpy (b->bmp, bmp, bmp_len * sizeof (uint32_t)); free(sa->replay_state_esn); sa->replay_state_esn = _nl_steal_pointer(&b); sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE; return 0; } /** * Get interface id and flags from xfrm_user_offload. * * @arg sa The xfrmnl_sa object. * @arg ifindex An optional output value for the offload interface index. * @arg flags An optional output value for the offload flags. * * @return 0 on success or a negative error code. */ int xfrmnl_sa_get_user_offload(struct xfrmnl_sa *sa, int *ifindex, uint8_t *flags) { int ret = -1; if (sa->ce_mask & XFRM_SA_ATTR_OFFLOAD_DEV && sa->user_offload) { if (ifindex) *ifindex = sa->user_offload->ifindex; if (flags) *flags = sa->user_offload->flags; ret = 0; } return ret; } /** * Set interface id and flags for xfrm_user_offload. * * @arg sa The xfrmnl_sa object. * @arg ifindex Id of the offload interface. * @arg flags Offload flags for the state. * * @return 0 on success or a negative error code. */ int xfrmnl_sa_set_user_offload(struct xfrmnl_sa *sa, int ifindex, uint8_t flags) { _nl_auto_free struct xfrmnl_user_offload *b = NULL; if (!(b = calloc(1, sizeof(*b)))) return -1; b->ifindex = ifindex; b->flags = flags; free(sa->user_offload); sa->user_offload = _nl_steal_pointer(&b); sa->ce_mask |= XFRM_SA_ATTR_OFFLOAD_DEV; return 0; } int xfrmnl_sa_is_hardexpiry_reached (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_EXPIRE) return (sa->hard > 0 ? 1: 0); else return 0; } int xfrmnl_sa_is_expiry_reached (struct xfrmnl_sa* sa) { if (sa->ce_mask & XFRM_SA_ATTR_EXPIRE) return 1; else return 0; } /** @} */ static struct nl_object_ops xfrm_sa_obj_ops = { .oo_name = "xfrm/sa", .oo_size = sizeof(struct xfrmnl_sa), .oo_constructor = xfrm_sa_alloc_data, .oo_free_data = xfrm_sa_free_data, .oo_clone = xfrm_sa_clone, .oo_dump = { [NL_DUMP_LINE] = xfrm_sa_dump_line, [NL_DUMP_DETAILS] = xfrm_sa_dump_details, [NL_DUMP_STATS] = xfrm_sa_dump_stats, }, .oo_compare = xfrm_sa_compare, .oo_attrs2str = xfrm_sa_attrs2str, .oo_id_attrs = (XFRM_SA_ATTR_DADDR | XFRM_SA_ATTR_SPI | XFRM_SA_ATTR_PROTO), }; static struct nl_af_group xfrm_sa_groups[] = { { AF_UNSPEC, XFRMNLGRP_SA }, { AF_UNSPEC, XFRMNLGRP_EXPIRE }, { END_OF_GROUP_LIST }, }; static struct nl_cache_ops xfrmnl_sa_ops = { .co_name = "xfrm/sa", .co_hdrsize = sizeof(struct xfrm_usersa_info), .co_msgtypes = { { XFRM_MSG_NEWSA, NL_ACT_NEW, "new" }, { XFRM_MSG_DELSA, NL_ACT_DEL, "del" }, { XFRM_MSG_GETSA, NL_ACT_GET, "get" }, { XFRM_MSG_EXPIRE, NL_ACT_UNSPEC, "expire"}, { XFRM_MSG_UPDSA, NL_ACT_NEW, "update"}, END_OF_MSGTYPES_LIST, }, .co_protocol = NETLINK_XFRM, .co_groups = xfrm_sa_groups, .co_request_update = xfrm_sa_request_update, .co_msg_parser = xfrm_sa_msg_parser, .co_obj_ops = &xfrm_sa_obj_ops, .co_include_event = &xfrm_sa_update_cache }; /** * @name XFRM SA Cache Managament * @{ */ static void __attribute__ ((constructor)) xfrm_sa_init(void) { nl_cache_mngt_register(&xfrmnl_sa_ops); } static void __attribute__ ((destructor)) xfrm_sa_exit(void) { nl_cache_mngt_unregister(&xfrmnl_sa_ops); } /** @} */