#include #include #include #include #include #include #include #include /* -------------------------------------------------------- */ #define do_log(level, format, ...) \ blog(level, "[expander/gate/upward compressor: '%s'] " format, \ obs_source_get_name(cd->context), ##__VA_ARGS__) #define warn(format, ...) do_log(LOG_WARNING, format, ##__VA_ARGS__) #define info(format, ...) do_log(LOG_INFO, format, ##__VA_ARGS__) #ifdef _DEBUG #define debug(format, ...) do_log(LOG_DEBUG, format, ##__VA_ARGS__) #else #define debug(format, ...) #endif /* -------------------------------------------------------- */ /* clang-format off */ #define S_RATIO "ratio" #define S_THRESHOLD "threshold" #define S_ATTACK_TIME "attack_time" #define S_RELEASE_TIME "release_time" #define S_OUTPUT_GAIN "output_gain" #define S_DETECTOR "detector" #define S_PRESETS "presets" #define S_KNEE "knee_width" #define MT_ obs_module_text #define TEXT_RATIO MT_("Expander.Ratio") #define TEXT_THRESHOLD MT_("Expander.Threshold") #define TEXT_ATTACK_TIME MT_("Expander.AttackTime") #define TEXT_RELEASE_TIME MT_("Expander.ReleaseTime") #define TEXT_OUTPUT_GAIN MT_("Expander.OutputGain") #define TEXT_DETECTOR MT_("Expander.Detector") #define TEXT_PEAK MT_("Expander.Peak") #define TEXT_RMS MT_("Expander.RMS") #define TEXT_PRESETS MT_("Expander.Presets") #define TEXT_PRESETS_EXP MT_("Expander.Presets.Expander") #define TEXT_PRESETS_GATE MT_("Expander.Presets.Gate") #define TEXT_KNEE MT_("Expander.Knee.Width") #define MIN_RATIO 1.0f #define MAX_RATIO 20.0f #define MIN_RATIO_UPW 0.0f #define MAX_RATIO_UPW 1.0f #define MIN_THRESHOLD_DB -60.0f #define MAX_THRESHOLD_DB 0.0f #define MIN_OUTPUT_GAIN_DB -32.0f #define MAX_OUTPUT_GAIN_DB 32.0f #define MIN_ATK_RLS_MS 1 #define MAX_RLS_MS 1000 #define MAX_ATK_MS 100 #define DEFAULT_AUDIO_BUF_MS 10 #define MS_IN_S 1000 #define MS_IN_S_F ((float)MS_IN_S) /* clang-format on */ /* -------------------------------------------------------- */ struct expander_data { obs_source_t *context; float *envelope_buf[MAX_AUDIO_CHANNELS]; size_t envelope_buf_len; float ratio; float threshold; float attack_gain; float release_gain; float output_gain; size_t num_channels; size_t sample_rate; float envelope[MAX_AUDIO_CHANNELS]; float slope; int detector; float runave[MAX_AUDIO_CHANNELS]; bool is_gate; float *runaverage[MAX_AUDIO_CHANNELS]; size_t runaverage_len; float *gain_db[MAX_AUDIO_CHANNELS]; size_t gain_db_len; float gain_db_buf[MAX_AUDIO_CHANNELS]; float *env_in; size_t env_in_len; bool is_upwcomp; float knee; }; enum { RMS_DETECT, RMS_STILLWELL_DETECT, PEAK_DETECT, NO_DETECT, }; /* -------------------------------------------------------- */ static void resize_env_buffer(struct expander_data *cd, size_t len) { cd->envelope_buf_len = len; for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) cd->envelope_buf[i] = brealloc(cd->envelope_buf[i], cd->envelope_buf_len * sizeof(float)); } static void resize_runaverage_buffer(struct expander_data *cd, size_t len) { cd->runaverage_len = len; for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) cd->runaverage[i] = brealloc( cd->runaverage[i], cd->runaverage_len * sizeof(float)); } static void resize_env_in_buffer(struct expander_data *cd, size_t len) { cd->env_in_len = len; cd->env_in = brealloc(cd->env_in, cd->env_in_len * sizeof(float)); } static void resize_gain_db_buffer(struct expander_data *cd, size_t len) { cd->gain_db_len = len; for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) cd->gain_db[i] = brealloc(cd->gain_db[i], cd->gain_db_len * sizeof(float)); } static inline float gain_coefficient(uint32_t sample_rate, float time) { return expf(-1.0f / (sample_rate * time)); } static const char *expander_name(void *unused) { UNUSED_PARAMETER(unused); return obs_module_text("Expander"); } static const char *upward_compressor_name(void *unused) { UNUSED_PARAMETER(unused); return obs_module_text("Upward.Compressor"); } static void expander_defaults(obs_data_t *s) { const char *presets = obs_data_get_string(s, S_PRESETS); bool is_expander_preset = true; if (strcmp(presets, "gate") == 0) is_expander_preset = false; obs_data_set_default_string(s, S_PRESETS, is_expander_preset ? "expander" : "gate"); obs_data_set_default_double(s, S_RATIO, is_expander_preset ? 2.0 : 10.0); obs_data_set_default_double(s, S_THRESHOLD, -40.0f); obs_data_set_default_int(s, S_ATTACK_TIME, 10); obs_data_set_default_int(s, S_RELEASE_TIME, is_expander_preset ? 50 : 125); obs_data_set_default_double(s, S_OUTPUT_GAIN, 0.0); obs_data_set_default_string(s, S_DETECTOR, "RMS"); } static void upward_compressor_defaults(obs_data_t *s) { obs_data_set_default_double(s, S_RATIO, 0.5); obs_data_set_default_double(s, S_THRESHOLD, -20.0f); obs_data_set_default_int(s, S_ATTACK_TIME, 10); obs_data_set_default_int(s, S_RELEASE_TIME, 50); obs_data_set_default_double(s, S_OUTPUT_GAIN, 0.0); obs_data_set_default_string(s, S_DETECTOR, "RMS"); obs_data_set_default_int(s, S_KNEE, 10); } static void expander_update(void *data, obs_data_t *s) { struct expander_data *cd = data; if (!cd->is_upwcomp) { const char *presets = obs_data_get_string(s, S_PRESETS); if (strcmp(presets, "expander") == 0 && cd->is_gate) { obs_data_clear(s); obs_data_set_string(s, S_PRESETS, "expander"); expander_defaults(s); cd->is_gate = false; } if (strcmp(presets, "gate") == 0 && !cd->is_gate) { obs_data_clear(s); obs_data_set_string(s, S_PRESETS, "gate"); expander_defaults(s); cd->is_gate = true; } } const uint32_t sample_rate = audio_output_get_sample_rate(obs_get_audio()); const size_t num_channels = audio_output_get_channels(obs_get_audio()); const float attack_time_ms = (float)obs_data_get_int(s, S_ATTACK_TIME); const float release_time_ms = (float)obs_data_get_int(s, S_RELEASE_TIME); const float output_gain_db = (float)obs_data_get_double(s, S_OUTPUT_GAIN); const float knee = cd->is_upwcomp ? (float)obs_data_get_int(s, S_KNEE) : 0.0f; cd->ratio = (float)obs_data_get_double(s, S_RATIO); cd->threshold = (float)obs_data_get_double(s, S_THRESHOLD); cd->attack_gain = gain_coefficient(sample_rate, attack_time_ms / MS_IN_S_F); cd->release_gain = gain_coefficient(sample_rate, release_time_ms / MS_IN_S_F); cd->output_gain = db_to_mul(output_gain_db); cd->num_channels = num_channels; cd->sample_rate = sample_rate; cd->slope = 1.0f - cd->ratio; cd->knee = knee; const char *detect_mode = obs_data_get_string(s, S_DETECTOR); if (strcmp(detect_mode, "RMS") == 0) cd->detector = RMS_DETECT; if (strcmp(detect_mode, "peak") == 0) cd->detector = PEAK_DETECT; size_t sample_len = sample_rate * DEFAULT_AUDIO_BUF_MS / MS_IN_S; if (cd->envelope_buf_len == 0) resize_env_buffer(cd, sample_len); if (cd->runaverage_len == 0) resize_runaverage_buffer(cd, sample_len); if (cd->env_in_len == 0) resize_env_in_buffer(cd, sample_len); if (cd->gain_db_len == 0) resize_gain_db_buffer(cd, sample_len); } static void *compressor_expander_create(obs_data_t *settings, obs_source_t *filter, bool is_compressor) { struct expander_data *cd = bzalloc(sizeof(struct expander_data)); cd->context = filter; for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) { cd->runave[i] = 0; cd->envelope[i] = 0; cd->gain_db_buf[i] = 0; } cd->is_gate = false; const char *presets = obs_data_get_string(settings, S_PRESETS); if (strcmp(presets, "gate") == 0) cd->is_gate = true; cd->is_upwcomp = is_compressor; expander_update(cd, settings); return cd; } static void *expander_create(obs_data_t *settings, obs_source_t *filter) { return compressor_expander_create(settings, filter, false); } static void *upward_compressor_create(obs_data_t *settings, obs_source_t *filter) { return compressor_expander_create(settings, filter, true); } static void expander_destroy(void *data) { struct expander_data *cd = data; for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) { bfree(cd->envelope_buf[i]); bfree(cd->runaverage[i]); bfree(cd->gain_db[i]); } bfree(cd->env_in); bfree(cd); } // detection stage static void analyze_envelope(struct expander_data *cd, float **samples, const uint32_t num_samples) { if (cd->envelope_buf_len < num_samples) resize_env_buffer(cd, num_samples); if (cd->runaverage_len < num_samples) resize_runaverage_buffer(cd, num_samples); if (cd->env_in_len < num_samples) resize_env_in_buffer(cd, num_samples); // 10 ms RMS window const float rmscoef = exp2f(-100.0f / cd->sample_rate); for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) { memset(cd->envelope_buf[i], 0, num_samples * sizeof(cd->envelope_buf[i][0])); memset(cd->runaverage[i], 0, num_samples * sizeof(cd->runaverage[i][0])); } memset(cd->env_in, 0, num_samples * sizeof(cd->env_in[0])); for (size_t chan = 0; chan < cd->num_channels; ++chan) { if (!samples[chan]) continue; float *envelope_buf = cd->envelope_buf[chan]; float *runave = cd->runaverage[chan]; float *env_in = cd->env_in; if (cd->detector == RMS_DETECT) { runave[0] = rmscoef * cd->runave[chan] + (1 - rmscoef) * powf(samples[chan][0], 2.0f); env_in[0] = sqrtf(fmaxf(runave[0], 0)); for (uint32_t i = 1; i < num_samples; ++i) { runave[i] = rmscoef * runave[i - 1] + (1 - rmscoef) * powf(samples[chan][i], 2.0f); env_in[i] = sqrtf(runave[i]); } } else if (cd->detector == PEAK_DETECT) { for (uint32_t i = 0; i < num_samples; ++i) { runave[i] = powf(samples[chan][i], 2); env_in[i] = fabsf(samples[chan][i]); } } cd->runave[chan] = runave[num_samples - 1]; for (uint32_t i = 0; i < num_samples; ++i) envelope_buf[i] = fmaxf(envelope_buf[i], env_in[i]); cd->envelope[chan] = cd->envelope_buf[chan][num_samples - 1]; } } static inline void process_sample(size_t idx, float *samples, float *env_buf, float *gain_db, bool is_upwcomp, float channel_gain, float threshold, float slope, float attack_gain, float inv_attack_gain, float release_gain, float inv_release_gain, float output_gain, float knee) { /* --------------------------------- */ /* gain stage of expansion */ float env_db = mul_to_db(env_buf[idx]); float diff = threshold - env_db; if (is_upwcomp && env_db <= (threshold - 60.0f) / 2) diff = env_db + 60.0f > 0 ? env_db + 60.0f : 0.0f; float gain = 0.0f; float prev_gain = 0.0f; // Note that the gain is always >= 0 for the upward compressor // but is always <=0 for the expander. if (is_upwcomp) { prev_gain = idx > 0 ? fmaxf(gain_db[idx - 1], 0) : fmaxf(channel_gain, 0); // gain above knee (included for clarity): if (env_db >= threshold + knee / 2) gain = 0.0f; // gain below knee: if (threshold - knee / 2 >= env_db) gain = slope * diff; // gain in knee: if (env_db > threshold - knee / 2 && threshold + knee / 2 > env_db) gain = slope * powf(diff + knee / 2, 2) / (2.0f * knee); } else { prev_gain = idx > 0 ? gain_db[idx - 1] : channel_gain; gain = diff > 0.0f ? fmaxf(slope * diff, -60.0f) : 0.0f; } /* --------------------------------- */ /* ballistics (attack/release) */ if (gain > prev_gain) gain_db[idx] = attack_gain * prev_gain + inv_attack_gain * gain; else gain_db[idx] = release_gain * prev_gain + inv_release_gain * gain; /* --------------------------------- */ /* output */ if (!is_upwcomp) { gain = db_to_mul(fminf(0, gain_db[idx])); } else { gain = db_to_mul(gain_db[idx]); } samples[idx] *= gain * output_gain; } // gain stage and ballistics in dB domain static inline void process_expansion(struct expander_data *cd, float **samples, uint32_t num_samples) { const float attack_gain = cd->attack_gain; const float release_gain = cd->release_gain; const float inv_attack_gain = 1.0f - attack_gain; const float inv_release_gain = 1.0f - release_gain; const float threshold = cd->threshold; const float slope = cd->slope; const float output_gain = cd->output_gain; const bool is_upwcomp = cd->is_upwcomp; const float knee = cd->knee; if (cd->gain_db_len < num_samples) resize_gain_db_buffer(cd, num_samples); for (size_t i = 0; i < cd->num_channels; i++) memset(cd->gain_db[i], 0, num_samples * sizeof(cd->gain_db[i][0])); for (size_t chan = 0; chan < cd->num_channels; chan++) { float *channel_samples = samples[chan]; float *env_buf = cd->envelope_buf[chan]; float *gain_db = cd->gain_db[chan]; float channel_gain = cd->gain_db_buf[chan]; for (size_t i = 0; i < num_samples; ++i) { process_sample(i, channel_samples, env_buf, gain_db, is_upwcomp, channel_gain, threshold, slope, attack_gain, inv_attack_gain, release_gain, inv_release_gain, output_gain, knee); } cd->gain_db_buf[chan] = gain_db[num_samples - 1]; } } static struct obs_audio_data * expander_filter_audio(void *data, struct obs_audio_data *audio) { struct expander_data *cd = data; const uint32_t num_samples = audio->frames; if (num_samples == 0) return audio; float **samples = (float **)audio->data; analyze_envelope(cd, samples, num_samples); process_expansion(cd, samples, num_samples); return audio; } static bool presets_changed(obs_properties_t *props, obs_property_t *prop, obs_data_t *settings) { UNUSED_PARAMETER(props); UNUSED_PARAMETER(prop); UNUSED_PARAMETER(settings); return true; } static obs_properties_t *expander_properties(void *data) { struct expander_data *cd = data; obs_properties_t *props = obs_properties_create(); obs_property_t *p; if (!cd->is_upwcomp) { obs_property_t *presets = obs_properties_add_list( props, S_PRESETS, TEXT_PRESETS, OBS_COMBO_TYPE_LIST, OBS_COMBO_FORMAT_STRING); obs_property_list_add_string(presets, TEXT_PRESETS_EXP, "expander"); obs_property_list_add_string(presets, TEXT_PRESETS_GATE, "gate"); obs_property_set_modified_callback(presets, presets_changed); } p = obs_properties_add_float_slider( props, S_RATIO, TEXT_RATIO, !cd->is_upwcomp ? MIN_RATIO : MIN_RATIO_UPW, !cd->is_upwcomp ? MAX_RATIO : MAX_RATIO_UPW, 0.1); obs_property_float_set_suffix(p, ":1"); p = obs_properties_add_float_slider(props, S_THRESHOLD, TEXT_THRESHOLD, MIN_THRESHOLD_DB, MAX_THRESHOLD_DB, 0.1); obs_property_float_set_suffix(p, " dB"); p = obs_properties_add_int_slider(props, S_ATTACK_TIME, TEXT_ATTACK_TIME, MIN_ATK_RLS_MS, MAX_ATK_MS, 1); obs_property_int_set_suffix(p, " ms"); p = obs_properties_add_int_slider(props, S_RELEASE_TIME, TEXT_RELEASE_TIME, MIN_ATK_RLS_MS, MAX_RLS_MS, 1); obs_property_int_set_suffix(p, " ms"); p = obs_properties_add_float_slider(props, S_OUTPUT_GAIN, TEXT_OUTPUT_GAIN, MIN_OUTPUT_GAIN_DB, MAX_OUTPUT_GAIN_DB, 0.1); obs_property_float_set_suffix(p, " dB"); if (!cd->is_upwcomp) { obs_property_t *detect = obs_properties_add_list( props, S_DETECTOR, TEXT_DETECTOR, OBS_COMBO_TYPE_LIST, OBS_COMBO_FORMAT_STRING); obs_property_list_add_string(detect, TEXT_RMS, "RMS"); obs_property_list_add_string(detect, TEXT_PEAK, "peak"); } else { p = obs_properties_add_int_slider(props, S_KNEE, TEXT_KNEE, 0, 20, 1); obs_property_float_set_suffix(p, " dB"); } return props; } struct obs_source_info expander_filter = { .id = "expander_filter", .type = OBS_SOURCE_TYPE_FILTER, .output_flags = OBS_SOURCE_AUDIO, .get_name = expander_name, .create = expander_create, .destroy = expander_destroy, .update = expander_update, .filter_audio = expander_filter_audio, .get_defaults = expander_defaults, .get_properties = expander_properties, }; struct obs_source_info upward_compressor_filter = { .id = "upward_compressor_filter", .type = OBS_SOURCE_TYPE_FILTER, .output_flags = OBS_SOURCE_AUDIO, .get_name = upward_compressor_name, .create = upward_compressor_create, .destroy = expander_destroy, .update = expander_update, .filter_audio = expander_filter_audio, .get_defaults = upward_compressor_defaults, .get_properties = expander_properties, };